

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-Accredited with 'A' Grade by NAAC

Thirty Ninth Academic Council Meeting

Department of Computer Science

Dr. Rm. Murugappan Dean – Curriculum Development

THIAGARAJAR COLLEGE, MADURAI – 9 (Re-Accredited with 'A' Grade by NAAC) Curriculum structure for B.Sc., CS, IT & BCA BBA & B.Com

(For those who join in June 2020 and after)

Category	Course	No. of Courses	Credit Distribution	Hrs/ Week	Total Credits
Part I	Tamil	2	3	-	06
Part II	English	2	3	-	06
		Sub	Total		12
Part III	Core			-	84+2
	Elect – Main	2	5	-	10
	Elect – Generic	2+2	5	-	20
		Sub	Total	-	116
Part IV	AECC I &II Sem	I sem EVS II Sem. VE	2 + 1	2 I &II Sem	03
	NME III & IV Sem	2	2	2 III & IV Sem	04
	SEC V & VI Sem	3	2	2 V & VI Sem	04
		Sub	Total	06	11
		Total			139
Part V	NCC (Army &Navy)/ Pl Library/ SSL/ Nature C	E/ NSS / Rotaract/ lub/Value Educatio	Quality Circle/ on/ YRC / WSC		1
		Grand Total			140

AECC – Ability Enhancement Compulsory Course

SEC – Skill Enhancement Course

NME – Non Major Elective

For Choice based credit system (CBCS)

- For NME every department offers two papers (one in each at III &IV semester)
- For SEC every department offer two papers for each course (Sem IV, V & VI)
- For Major elective there may be an option for choice.

Semester	Courses
Ι	EVS
II	VE
III	NME
IV	NME
V	SEC
VI	SEC

B.Sc. Computer Science Programme Code - UCS (Aided & SF)

Programme outcome-PO (Aligned with Graduate Attributes) - Bachelor of Science(B.Sc.,)

Scientific Knowledge and Critical Thinking

Apply the knowledge of Life Science, Physical and Chemical Science, Mathematics, statistics, Computer science and humanities for the attainment of solutions to the problems that come across in our day-to-daylife/activities.

Problem Solving

Identify and analyze the problem and formulate solutions for problems using the principles of mathematics, natural sciences with appropriate consideration for the public health, safety and environmental considerations.,

Communication and Computer Literacy

Communicate the fundamental and advanced concepts of their discipline in written and oral form. Able to make appropriate and effective use of information and information technology relevant to their discipline

Life-Long Learning

Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Ethical, Social and Professional Understanding

Commitment to principles, codes of conduct and social responsibility in order to behave consistently with personal respect. Acquire the responsibility to contribute for the personal development and for the development of the community. Respect the ethical values, social responsibilities and diversity.

Innovative, Leadership and Entrepreneur Skill Development

Function as an individual, and as a member or leader in diverse teams and in multidisciplinary settings. Become an entrepreneur by acquiring technical, communicative, problem solving, intellectual skills.

THIAGARAJAR COLLEGE, MADURAI – 9.

(Re-Accredited with 'A' Grade by NAAC)

DEPARTMENT OFCOMPUTER SCIENCE

Vision:

• To be frontier in educating Computer Science and to produce globally competent graduates with moral values committed to build a vibrant nation.

Mission:

- To strengthen the core competence in Computer Science through analytical learning.
- To produce successful graduates with personal and professional responsibilities and commitment to lifelong learning.
- To uplift innovative research in computer science to serve the needs of industry, government and society.

Programme Educational Objective (PEO):

Graduates will be able to

PEO1	Be employed successfully or continue their professional education.
PEO2	Apply knowledge of computing, mathematics and basic sciences that are relevant and
	appropriate to the domain.
PEO3	Use and develop skills as required for effective professional practices
PEO4	Remain abreast in their profession and be leaders in our technologically vibrant
	society.
PEO5	Lead a successful technical or professional career including supportive and leadership
	roles on multidisciplinary teams.

Programme Specific Outcome (PSO):-B.Sc., Computer Science

On the successful completion of B.Sc., Computer Science the students will

PSO1	Develop the knowledge on principles of hardware and software aspects of computing
	systems.
PSO2	Build up programming efficiency by designing algorithms and applying standard
	practices in
	software project development.
PSO3	Apply knowledge on software development tools, software systems and open source
	platforms.
PSO4	Perceive technical, practical and communicative skills among the students to face the
	industrial needs.
PSO5	Create awareness on the current issues, latest trends in technological development and
	there by innovate new ideas and solutions to existing problems.

THIAGARAJAR COLLEGE, MADURAI – 9

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020)

	I SEMESTER							
Course	Code No.	Title of the paper	Hrs/	Crd.	Total	Marks		
			wk		Hrs	CIA	SE	ТОТ
Part 1	U20P111C	இக்காலத் தமிழும் இடைக்காலத் தமிழும்	5	3	75	25	75	100
Part 2	U20EN12	English for Comm. I	3	-	-	-	-	-
Core 1	UCS20C11	Digital Computer Fundamentals	5	4	75	25	75	100
Core 2	UCS20C12	Programming in C	5	4	75	25	75	100
Allied I	UMA20GE11I	Mathematical Foundation for Computer Science	5	5	75	25	75	100
Core Lab1	UCS20CL11	C Programming Lab	5	2	75	40	60	100
EVS	U20ES11	Environmental Studies	2	2	30	15	35	50
Total			30	20				650

*- English Examination will be held at end of the year

II SEMESTER								
Course	Code No.	Title of the paper	Hrs/	Crd.	Total Hrs		Marks	
			WK		1115	CIA	SE	TOT
Part 1	U20P121C	சமயத் தமிழும் செவ்வியல் தமிழும்	5	3	75	25	75	100
Part 2	U20EN12	English for Comm. I	3	6	45	25	75	100
Core 3	UCS20C21	Web Technology	5	4	75	25	75	100
Core 4	UCS20C22	Computer Organization and Architecture	5	4	75	25	75	100
Allied -II	UMA20GE21I	Probability and Statistics	5	5	75	25	75	100
Core Lab2	UCS20CL21	Web Technology Lab	5	2	75	40	60	100
VE	U20VE21	Value Education	2	1	30	15	35	50
Total			30	25				650

III SEMESTER								
G	C. L. N.		Hrs/		Total	Marks		
Course	Code No.	1 the of the paper	wk	Cra	Hrs	CIA	SE	TO T
Core 5	UCS20C31	Data structures and Algorithms	5	4	75	25	75	100
Core 6	UCS20C32	System Software	5	4	75	25	75	100
Core 7	UCS20C33	Relational Database Management Systems	5	4	75	25	75	100
Allied III	UMA20GE31I	Computational Methods	5	5	75	25	75	100
NME I	UCS20NE31	Software Development	2	2	30	15	35	50
Core Lab 3	UCS20CL31	Data structures Lab	4	2	60	40	60	100
Core Lab 4	UCS20CL32	SQL and PLSQL Lab	4	2	60	40	60	100
Total			30	23				650

	IV SEMESTER							
Course	Code No. T	Title of the paper	Hrs/	Crd.	Total	Marks		
			WK		1115	CIA	SE	ТОТ
Core 8	UCS20C41	Programming in Java	6	5	75	25	75	100
Core 9	UCS2042	Computer Graphics	6	5	75	25	75	100
Allied IV	UMA20GE41I	Operations Research	5	5	75	25	75	100
NME II	UCS20NE41	Internet Applications	2	2	30	15	35	50
Core Lab5	UCS20CL41	Java Programming Lab	6	2	90	40	60	100
Core Lab6	UCS20CL42	Graphics Lab	5	2	75	40	60	100
Total			30	21				600

V SEMESTER									
Course	Code No.	Title of the paper	Hrs/ Wk	Crd.	I. Total	Marks			
			VV K		пт	CIA	SE	ТОТ	
Core 10	UCS20C51	Automata Theory	5	4	75	25	75	100	
Core 11	UCS20C52	Software Engineering	5	4	75	25	75	100	
Core 12	UCS20C53	Programming in Python	4	4	60	25	75	100	
Core 13	UCS20C54	Operating Systems	5	4	75	25	75	100	
Core Elective-I	UCS20CE51	Core Elective - I	5	5	75	25	75	100	
SEC – I	UCS20SE51	Skill Enhancement Course – I	2	2	30	15	35	50	
Core Lab7	UCS20CL51	Python Programming Lab	4	2	60	40	60	100	
Total			30	25				650	

VI SEMESTER								
Course	Code No.	Title of the paper	Hrs/	Crd.	Total Hrs		Μ	arks
			WK		1115	CIA	SE	ТОТ
Core 14	UCS20C61	Computer Networks	5	4	75	25	75	100
Core 15	UCS20C62	Open Source Technology	4	4	60	25	75	100
Core 16	UCS20C63	Cloud Computing	5	4	75	25	75	100
Core Elective-II	UCS20CE61	Core Elective- II	5	5	75	25	75	100
SEC II	UCS20SE61	Skill Enhancement Course – II	2	2	30	15	35	50
Core Lab 8	UCS20CL61	Open Source Technology Lab	4	2	60	40	60	100
Project	UCS20PJ61	Project & Viva Voce	5	4	75	25	75	100
Part V		NCC/NSS/PE		1				
Total			30	26				650

List of Electives

Core Electives

- Data Mining and Warehousing
- Multimedia Systems
- Artificial Intelligence
- E-Commerce Technologies

Skill Enhancement Courses

- Office Automation
- Android Programming
- PHP Programming
- .Net Programming
- Linux Programming
- jQuery Scripting
- XML Programming

THIAGARAJAR COLLEGE, MADURAI – 9

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020)

Programme Code: UCS

Course code	Course Title	Category	L	Т	Р	Credit
UCS20C11	Digital Computer Fundamentals	Core-1	4	1	-	4
	L – Lecture T – Tutoria	ıl P–F	Practic	cal		

Year	Semester	Internal	External	Total
Ι	Ι	25	75	100

Preamble

It aims to train the student to the basic concepts of Digital Computer Fundamentals. To impart the indepth knowledge of logic gates, Boolean algebra, combinational circuits and sequential circuits.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge
		Level
CO1	Illustrate the basic idea about number systems and to learn conversion from one number system to another number system.	K3
CO2	Build simple logic circuits using Basic gates and Universal Logic gates.	K3
CO3	Analyze various data processing circuits.	K1
CO4	Explain characteristics of Flip-Flops and Registers	K2
CO5	Analyze various Types of Counters and Memory	K2
	K1-Knowledge K2-Understand K3-Apply	

Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	-	-	-	М
CO2	S	-	-	-	L
CO3	М	-	-	S	-
CO4	S	-	-	М	-
CO5	S	-	-	-	L
S-STRONG		M	-MEDIUM	1	L-LOV

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Μ	S	-	L	-	L
CO2	Μ	S	-	-	-	-
CO3	S	Μ	-	-	-	-
CO4	S	-	-	-	-	Μ
CO5	S	-	-	-	-	L
S-STRONG			M-MEDIU	M	L-L(OW

Blooms taxonomy

Conte	III	

UNIT - I

Number systems and codes

Binary Number System- Binary to decimal Conversion - Decimal to binary Conversion - Octal Numbers - Hexadecimal Numbers - The ASCII code – The Excess-3 Code - The Gray Code.

Digital Logic

The Basic gates-NOT, OR, AND - Universal logic gates NOR, NAND - AND OR Invert Gates-Positive and Negative logic.

UNIT – II

Combinational Logic Circuits

Boolean Laws and Theorems - Sum of Products method - Truth table to Karnaugh Map - Pairs, Quads, and Octets –Karnaugh Simplifications - Don't care Conditions- Product of sums Method - Product of sums Simplification.

Arithmetic Circuits

Binary Addition - Binary Subtraction - Unsigned Binary Numbers - Sign Magnitude Numbers - 2's Complement Representation - 2's Complement Arithmetic - Arithmetic Building Blocks - The Adder - subtracter.

UNIT-III

Data Processing Circuits

Multiplexers - Demultiplexers - 1 of 16 Decoder – BCD to decimal Decoders - Seven segment Decoders - Encoders - Exclusive OR Gates - Parity Generators and Checkers.

UNIT - IV

Flip-Flops

RS FLIP FLOPs - Gated FLIP-FLOPs - Edge-triggered RS FLIP-FLOPs -Edge-triggered D FLIP-FLOPs - Edge-triggered JK FLIP-FLOPs - FLIP-FLOP Timing.

Registers

Types of Registers – Serial In – serial Out – Serial In – parallel Out - Parallel In- serial Out – Parallel In – parallel Out.

UNIT-V

Counters

Asynchronous Counters - Decoding Gates - Synchronous Counters - Changing the Counter Modulus - Decade Counters.

15 Hours

15 Hours

15 Hours

15 Hours

15 Hours

CA End of Semester Second First Knowledge-K1 40% 40% 40% Understand-K2 40% 40% 40% Apply-K3 20% 20% 20%

Memory:

Basic Terms and Ideas- Magnetic Memory- Optical Memory- Memory Addressing- ROMs, PROMs, and EPROMs- RAMs

Text Book

1. Donald P.Leach, Albert Paul Malvino, Goutam Saha, 5th reprinted 2013, Digital Principlesand application, 7e, McGraw Hill Edition.

Refernces

- 1. M.Morris Mano, 2004, Digital Logic and computer design, Prentice Hall of India.
- 2. Ronald J.Tocci, 2007, Digital System Principles and Application, Prentice Hall of India.
- 3. T.C.Bartee, Digital Computer Fundamentals, 6th Edition, Tata McGraw Hill,

Web Resources

- 1. <u>https://www.tutorialspoint.com/digital_circuits/</u>This tutorial is meant to provide the readers to know how to analyze and implement the combinational circuits and sequential circuits.
- <u>https://www.electronics-tutorials.ws/sequential/seq_5.html</u>The tutorial about Sequential Logic Circuits, we will look at connecting together data latches to produce another type of sequential logic circuit called a *Shift Register* that are used to convert parallel data into serial data and vice versa.

Chapters

Unit - I : 5.1 to 5.8, 2.1 to 2.4, Unit – II : 3.1 to 3.8, 6.1 to 6.8 Unit - III : 4.1 to 4.8 Unit – IV : 8.1 to 8.6, 9.1 to 9.5 Unit - V :, 10.1 to 10.5, 13.1 to 13.6

Course Designer

Mrs. SM. Valli, Dr.K.Palaniammal

THIAGARAJAR COLLEGE, MADURAI – 9

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020)

Programme Code:UCS

Course code	Course Title	Category		L	Т	Р	Credit
UCS20C12	Programming in C	Core-2		4	1	-	4
	L – Lecture	T – Tutorial	P – I	Practic	cal		·
Year	Semester		Internal	Exte	ernal	Tota	ıl
Ι	Ι		25	75		100	

Preamble

This course is designed to introduce the power of three decade old programming language and rendering basic programming concepts and leads to learn other language with ease and promotes to be a successful program developer to meet IT needs.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Illustrate the procedural paradigm with tokens, variables, operators and Library functions.	K2
CO2	Demonstrate the concept of control statements.	K2
CO3	Reveal the concept of functions and storage classes.	K2
CO4	Know the concept of array, strings and structures.	K3
CO5	Know the importance of pointers and files	K2
K1-]	Knowledge K2-Understand K	3-Apply

Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	-	-	-	Μ
CO2	S	-	-	-	L
CO3	Μ	-	-	S	-
CO4	S	-	-	М	-
CO5	S	-	-	-	L
S-STRO	NG	M-N	IEDIUM	1	L-LOW

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	Μ	-	-	-	-
CO2	-	-	Μ	М	L	-
CO3	-	S	-	М	М	-
CO4	-	S	-	-	Μ	М
CO5		Μ	S	M	-	L
S-S'	TRONG		M-MEDIU	M	L-L(OW

S-STRONG

Blooms taxonomy

		CA	End of Semester
	First	Second	
Knowledge-K1	40%	40%	40%
Understand-K2	40%	40%	40%
Apply-K3	20%	20%	20%

Content

UNIT - I **Overview of C and Data types**

C fundamentals Character set - Identifier and keywords - data types - constants - Variables - Declarations - Expressions - Statements - Arithmetic, Unary, Relational and logical, Assignment and Conditional Operators - Library functions.

UNIT - II **Decision Making and Branching statements**

Data input output functions - Simple C programs - Flow of control - if, if-else, while, do-while, for loop, Nested control structures - Switch, break and continue, go to statements

UNIT - III **Arrays and String**

Functions -Definition - proto-types - Passing arguments - Recursions. Storage Classes - Automatic, External, Static, Register Variables.

UNIT - IV **Function and Structure**

Arrays - Defining and Processing - Passing arrays to functions - Multi-dimension arrays - Arrays and String. Structures - User defined data types - Passing structures to functions – Unions.

UNIT - V **Pointers and File**

Pointers - Declarations - Passing pointers to Functions - Operation in Pointers - Pointer and Arrays -Arrays of Pointers - Structures and Pointers - Files: Creating Processing, Opening and Closing a data file-Input/output operations in file.

Text Book

E.Balagurusamy, 2012, Programming in ANSI C, 6th edn, McGraw Hill Publishing Company Ltd, New York

Reference Books

1. B.W. Kernighan and D M.Ritchie, 1988 "The C Programming Language", 2nd Edition, PHI,

- 2. H. Schildt, 2000 "C: The Complete Reference", 4th Edition. TMH Edition.
- 3. Gottfried B.S,1996 "Programming with C", Second Edition, TMH Pub. Co. Ltd., New Delhi.

K - 19 -

12 hours

12 hours

11 hours

21 hours

19 hours

4. Kanetkar Y., 1999 "Let us C", BPB Pub., New Delhi,.

Chapters (Relevant 7	Topics Only)
Unit -I	: 1.1, 1.2 ,2.2 to 2.8,2.11,2.12, 3.1 to 3.16
Unit –II Unit –III	: 4.1 to 4.5, 5.1 to 5.9, 6.2 to 6.4 : 9.1to 9.16, 9.18, 9.19
Unit –IV	: 7.1 to 7.7, 9.17, 8.1 to 8.8,10.1 to 10.5,10.8 to 10.11
Unit –V	: 11.1 to 11.6, 11.10 to 11.16, 12.1 to 12.3
Wah Deserves	

Web Resources

1. <u>https://www.tutorialspoint.com/cprogramming/</u>This site provides better online content regarding Programming in C

2. <u>https://www.programiz.com/c- programming</u> This site is well organized and easy to understand Programming in Ctutorials with lots of examples

Course Designer

Dr.K.Natarajan , Mrs.J.Uma , Mr.R.Chandrasekar

THIAGARAJAR COLLEGE, MADURAI - 9.

(Re-Accredited with "A" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020)

Programme Code:UCS

Course code	Course Title	Category	L	Т	Р	Credit
UCS20CL11	C Programming Lab	Core lab-1	-	-	6	3

Year	Semester	Internal	External	Total
Ι	Ι	40	60	100

Preamble

This lab course is designed to understand the power of three decade old programming language concepts and features and leads to learn other language with ease and promotes to survive in IT field

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Outline the logic using flowchart for a given problem and develop programs using conditional and looping statements	К3
CO2	Develop programs with implementation of arrays, functions and parameter passing techniques.	K1
CO3	Develop programs with string handling functions	К3
CO4	Construct programs with features of Structure.	К2
CO5	Gain skills to write file programs and perform various operations	К3
K1-]	Knowledge K2-Understand	K3-Apply

Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	-	-	-	-
CO2	-	-	Μ	-	-
CO3	-	-	Μ	-	-
CO4	-	-	М	М	-
CO5	-	-	М	М	-
S-ST	RONG	N	I-MEDIUM	[L-LC

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Μ	Μ	-	-	-	-
CO2	-	Μ	-	Μ	-	-
CO3	-	-	-	L	Μ	-
CO4	-	S	-	Μ	Μ	-
CO5	-	-	-	-	Μ	L

Content

Simple programs:

- 1. Simple interest
- 2. Find the biggest from two numbers -ordinary /switch case/conditional operator methods
- 3. Find the biggest from three given numbers
- 4. Check a given no is odd or even -ordinary/switch case/conditional operator methods
- 5. Print all prime numbers between any two given limit
- 6. Perform various arithmetic operations using switch case
- 7. Find the sum of digits of a given no
- 8. Binary to decimal- Decimal to binary conversion

Arrays:

- 1. Arrange "n" strings in alphabetical order
- 2. Counting the number of vowels, consonants, words, digits in a line of text.
- 3. Reverse a string and check for palindrome.
- 4. Substring detection, count and removal.
- 5. Finding and replacing substrings
- 6. Matrix addition/ subtraction/multiplication
- 7. Transpose and trace of a Matrix

Function and Structure:

- 1. Find GCD of two numbers by recursion
- 2. Print Fibonacci series by recursion
- 3. Mark list processing- Structure and call by value technique
- 4. EB bill calculation- Structure and call by reference technique

Searching and Files:

- 1. Linear Search
- 2. Binary Search
- 3. Create a data file to store "n" numbers and separate odd and even numbers.
- 4. Create a data file to store "n" characters and separate vowel and non-vowels.

Web Resources

https://www.tutorialspoint.com/cprogramming/ https://www.programiz.com/c-programming

https://www.geeksforgeeks.org/c-language-set-1-introduction/

Course designer:

Dr.K.Natarajan, Mrs.J.Uma, Mr.R.Chandrasekar

THIAGARAJAR COLLEGE, MADURAI – 9

(Re-Accredited with "A" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.A., B.Sc., B.Com., B.B.A., B.C.A on or after June 2020)

Programme Code: UCS

Course Code	Course Title	Category	L	Т	Р	Credit
U20ES11	Environmental Studies	AECC1	2	-	-	2

Year	Semester	Int. Marks	Ext.Marks	Total
First	First	15	35	50

Preamble

Students acquire knowledge on the basic concepts, components and importance of environment. On the completion of the course the student will be able to

Course Outcomes

	Course outcomes	Knowledge
		Level
CO1	Define the structure and functions of ecosystem	K1
CO2	Explain the benefits of biodiversity conservation	K2
CO3	Summarise the sources, effects and control measures of various types of	K1
	Pollutants	
CO4	Perceive the environment legislations in India for sustainable development.	К3
CO5	Elaborate the impact of environmental problems on life systems	К3
	K1:Knowledge K2:Understand K3:Apply	

Mapping of Course Outcomes with Programme SpecificOutcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	М	L	М
CO2		М	М		М
CO3		L	М	L	L
CO4			L	L	L
CO5	S	-	L	М	М

S-STRONG

M- MEDIUM

L-LOW

Mapping of Course Outcomes with Programme Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	L	S	S	-
CO2	S	М	L	М	L	L
CO3	S	S	L	S	М	L
CO4	S	S	L	М	S	S
CO5	S	М	-	S	S	S

Blooms taxonomy: Assessment Pattern

	(CA	End of
	First	Second	Semester
Knowledge	40%	40%	40%
Understand	40%	40%	40%
Apply	20%	20%	20%

Course Title: Environmental Studies

Unit I

Definition and Scope of Environmental Studies – Ecology and Ecosystem – Structure of an Ecosystem – Food chains, food webs and ecological pyramids – Causes of Biodiversity Loss – Benefit and Conservation of Biodiversity

Unit II

Environmental problems and Management: Causes, effects and Control measures of : Air PSOllution – Water Pollution – Noise pollution – Nuclear Hazards. Solid waste management and Waste Disposal methods. Climate change and Global Warming causes and Measures. Waste and Plastics. Urban environmental problems and measures. Environmental Legislations in India. Sustainable development and Inclusive growth.

Text Book

1. Kanagasabai, C.S. 2005.Environmental Studies. Rasee publishers. Madurai.

Reference Books

1. Yogendra, N. and Srivastava, N. 1998. Environmental PSOllution, Ashish Publishing House. New Delhi.

2. Sapru R.K.2001. Environment Management in India, Vol. I & Vol. II Ashish publishers house, New Delhi.

THIAGARAJAR COLLEGE, MADURAI – 9.

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc., Computer Science in 2020 and after)

Programme Code:UCS

Course Code	Course Title	Category	L	Т	Р	Credit
UCS20C21	Web Technology	Core4	4	1	-	4

Year	Semester	Int. Marks	Ext.Marks	Total
First	Second	25	75	100

Preamble

This course is designed to be familiar with the roles, methodologies, and best practices of designing and developing modern websites. Students will take part in the entire production cycle of websites from information gathering to designing layout to development utilizing HTML, CSS, and JavaScript web applications.

Course Outcomes

On the completion of the course the student will be able to

Course	Course Outcome	Knowledge Level
CO1	Demonstrate page layout, color schemes, contract, and	K1
	typography in the designs.	
CO2	Write valid and concise code for webpage.	К3
CO3	Demonstrate knowledge of artistic and design	K2
	components that are used in the creation of a web site.	
CO4	Design dynamic websites that meet specified needs and interests.	K3
CO5	Select appropriate HTML, CSS, and JavaScript codefrom public repositories that enhances the experience of web application design	К3

Mapping of Cos with PSOs

	PO1	PO2	PO3	PO4	PO5
CO1	S	Μ	-	-	-
CO2	-	S	-	-	-
CO3	-	S	Μ	-	-
CO4	S	-	Μ	L	-
CO5	-	-	S	М	L

S-STRONG

M-MEDIUM

L-LOW

Thiagarajar College, Madurai. - 39th ACM - Dept. of Comp. Sci. - Syllabus 2020

Mapping of Cos with Pos

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	Μ	-	-	-	L
CO2	-	S	Μ	-	-	-
CO3	-	-	Μ	-	-	S
CO4	S	-	Μ	L	-	-
CO5	-	-	S	M	L	S

S-STRONG

M-MEDIUM

L-LOW

Blooms taxonomy

		CA	End of
	First	Second	Semester
Knowledge-K1	40%	40%	40%
Understand-K2	40%	40%	40%
Apply-K3	20%	20%	20%

Content

UNIT – I

Structuring Documents for the Web: Introducing HTML and XHTML, Basic Text Formatting, Presentational Elements, Phrase Elements, Lists, Editing Text, Core Elements and Attributes, Attribute Groups. Links and Navigation: Basic Links, Creating Links with the <a> Element, Advanced E- mail Links. Images, Audio, and Video: Adding Images Using the Element, Using Images as Links Image Maps, Choosing the Right Image Format, Adding Flash, Video and Audio to your web pages.

UNIT – II

Tables: Introducing Tables, Grouping Section of a Table, Nested Tables, Accessing Tables. Forms: Introducing Forms, Form Controls, Sending Form Data to the Server. Frames: Introducing Frameset, <frame> Element, Creating Links Between Frames, Setting a Default Target Frame Using

UNIT – III

Cascading Style Sheets: Introducing CSS, Where you can Add CSS Rules. CSS Properties: Controlling Text, Text Formatting, Text Pseudo Classes, Selectors, Lengths, Introducing the Box Model. More Cascading Style Sheets: Links, Lists, Tables, Outlines, The :focus and :activate Pseudo classes Generated Content, Miscellaneous Properties, Additional Rules, Positioning and Layout wit, Page Layout CSS, Design Issues.

UNIT – IV

Java Script: How to Add Script to Your Pages, Variables and Data Types - Statements and Operators, Control Structures, Conditional Statements, Loop Statements - Functions - Message box, Dialog Boxes, Alert Boxes, Confirm Boxes, Prompt Boxes.

15 Hours

15 Hours

15 Hours

15 Hours

$\mathbf{UNIT}-\mathbf{V}$

Working with JavaScript: Practical Tips for Writing Scripts, JavaScript Objects: Window Object – Document object – Browser Object – Form Object – Navigator object Screen object – Events, Event Handlers, Forms – Validations, Form Enhancements, JavaScript Libraries.

Text Book

Jon Duckett, Beginning HTML, XTML, CSS and Java script, Wiley Publishing

Chapters

Unit	Chapters / Sections
Ι	1,2,3
II	4,5,6
III	7,8,9,10
IV	11
V	12

Reference Book

1. Chris Bates, "Web Programming", Wiley Publishing 3d Edition.

2. M. Srinivasan, "Web Technology: Theory and Practice", Pearson Publication

Web Resources:

<u>http://www.tutorialspoint.com/html/</u>This site provides better online content regarding html and serves as best skill developer on webpages.

<u>http://www.w3schools.com/html/</u>This site is well organized and easy to understand web building tutorials with lots of examples

<u>https://www.javatpoint.com/</u> This tutorial designed for beginners and professionals to learn about javascript.

Course designers

Mrs.A.M.Hema, Mr.J.Prakash, Mrs.G.Nalini

THIAGARAJAR COLLEGE, MADURAI – 9.

(Re-Accredited with "A Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined in 2020 and after)

Programme Code: UCS

Course Code	Course Title	Category	L	Т	Р	Credit
UCS20C22	Computer Organization and Architecture	Core 4	4	1	-	4

Year	Semester	Int. Marks	Ext.Marks	Total
First	Second	25	75	100

Preamble

This course is to acquire knowledge about computer hardware basics and organization. It helps to understand the function and design of individual units in a computer and interaction among these components.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Explain the organization of basic computers, its design and the design of control unit.	K1
CO2	Demonstrate the working of central processing unit.	K2
CO3	Describe the operators and language of the registers transfer, micro operations and input / output Organization.	K1
CO4	Explain the organization of memory and memory management hardware.	К2
CO5	Elaborate advanced concepts of computer architecture parallel processing, inter process communication and synchronization.	K1
K1 – Kn	owledge K2 - Unerstand	K3 – Apply

Mapping of Cos with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	-	-	-	-
CO2	S	-	-	М	-
CO3	L	L	L	-	-
CO4	S	-	-	Μ	-
CO5	S	-	-	L	S

S-STRONG

M-MEDIUM

L-LOW

Thiagarajar College, Madurai. - 39th ACM - Dept. of Comp. Sci. - Syllabus 2020

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Μ	М	-	-	-	М
CO2	S	-	-	Μ	-	-
CO3	L	L	L	-	-	-
CO4	S	-	-	Μ	-	Μ
CO5	S	-	-	L	S	Μ

M-MEDIUM

S-STRONG

Blooms taxonomy

CA End of First Second Semester 40% 40% Knowledge-K1 40% Understand-K2 40% 40% 40% Apply-K3 20% 20% 20%

Content

Unit-I -Basic Computer Organization:

Instruction codes -Computer Registers-Computer Instructions -Timing and control -Instruction cycle -Memory reference instructions -Input, Output and Interrupt -Complete Computer Description.

Unit –II -CPU:

General register organization -Design of arithmetic logic shift unit -Stack organization – Instruction formats -Addressing modes -Data transfer and manipulation -Program control.

Unit-III -Computer Arithmetic:

Hardware implementation and Algorithm for Addition, Subtraction, Multiplication, Division -Booth multiplication algorithm -Floating point Arithmetic operations -Decimal Arithmetic unit and Operations.

Unit-IV -I/O and Memory Organisation:

Input-output interface -Direct memory access -Input-Output processor –Memory Hierarchy – Main memory -Associative memory -Cache memory – Virtual memory.

15hrs

L-LOW

15hrs

15hrs

15hrs

Unit-V -Advanced Processing:

```
15hrs
```

RISC, CISC characteristics -Parallel Processing -Pipelining -Arithmetic pipeline -Instruction pipeline - Vector Processing -Array processors –Multiprocessors-Interconnection structures.

Text Book

M.Morris Mano, 2013, Computer System Architecture, 3rded, PearsonPrintice Hall

Units	Chapter
Ι	5.1 to 5.8
II	8.1 to 8.7,4.7
III	10.1 to 10.7
IV	11.2 , 11.6, 11.7, 12.1, 12.2, 12.4 to 12.6
V	8.8, 9.1 to 9.4,9.6, 9.7, 13.1, 13.2

Reference Books

1.V.CarlHamacher, ZvoknoG.Vranesic, SafwatG.Zaky,2008, Computer organization, 4thed, Tata Mc-Graw Hill

Web Resources:

1. <u>https://www.tutorialspoint.com/parallel_computer_architecture/</u> - This site provides better online content regarding parallel computer architecture, models, multiprocessors and synchronization.

2. <u>https://lecturenotes.in/subject/9/computer-organisation-and-architecture-coa</u>— This is COA study material and hand written notes by engineering students of various notes.

3. <u>https://www.computer-pdf.com/tutorials-computer-architecture-textbook</u> -Textbook for computer architecture in pdf file provides detail description about architecture, processor design etc.

Course designers

Dr. U.Jeyasutharsan, Mrs.G.Nalini

THIAGARAJAR COLLEGE, MADURAI – 9.

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined in B.Sc., Computer Science on 2020 and after)

Programme Code: UCS

Course Code	Course Title	Category	L	Т	Р	Credit
UCS20CL21	Web Technology Lab	Core Lab2	-	-	3	2

Year	Semester	Int. Marks	Ext.Marks	Total
First	Second	40	60	100

Preamble

This course is designed to introduce computer science students to the roles, methodologies, and best practices of designing and developing modern websites. Students will take part in the entire production cycle of websites from information gathering to designing layout to development utilizing HTML, CSS, and JavaScript web applications.

Course Outcomes

On the completion of the course the student will be able to develop websites by their own.

COs	Course Outcome	Knowledge Level
	Construct the List tags and its attributes	
CO1	Construct the Table t tags and its attributes	K1
CO2	Build programs with Form tag and its attributes, transition and transformation.	К2
	Develop code on CSS embedded style settings,	
CO3	colors and positioning elements.	К3
CO4	Experiment programs with box model and layout.	K3
CO5	Demonstrate the implementation of JavaScript array objects and JavaScript String objects.	К3
	K1 - Knowledge K2 - Understand K3	- Apply

Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	-	М	-	Μ
CO2	-	Μ	S	-	-
CO3	-	Μ	L	-	Μ
CO4	Μ	-	L	-	Μ
CO5	-	-	S	Μ	Μ
S – STR	ONG	M	– MEDIUI	M L	- LOW

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Μ	Μ	-	-	-	Μ
CO2	S	-	-	Μ	-	-
CO3	L	L	L		-	-
CO4	S	-	-	Μ	-	Μ
CO5	S	-	-	L	S	Μ

Content

- 1. Illustrate LIST tag and its attributes.
- 2. Illustrate TABLE tag and its attributes.
- 3. Illustrate nested Table.
- 4. Illustrate FORM tag and its Elements.
- 5. Illustrate FRAME tag and its attributes.
- 6. Nested Frame
- 7. Link, email and submit attributes with form and frame tag.
- 8. Illustrate inline CSS.
- 9. Illustrate CSS Text formatting styles
- 10. CSS external style setting.
- 11. Illustrate CSS colors and positing elements.
- 12. Demonstrate box layout.
- 13. Demonstrate page layout.
- 14. Deploy web page for mobile layout.
- 15. Simple program in JavaScript to illustrate IF and IF..ELSE statement.
- 16. Simple program in JavaScript to illustrate FOR statement.
- 17. Simple program in JavaScript to illustrate While statement.
- 18. Simple program in JavaScript to illustrate function.
- 19. Simple program in JavaScript to illustrate Array objects.
- 20. Simple program in JavaScript to illustrate Number objects
- 21. Simple program in JavaScript to illustrate String objects
- 22. Simple program in JavaScript to illustrate Date objects
- 23. Simple program in JavaScript to illustrate Math objects
- 24. Simple program in JavaScript to illustrate events.
- 25. Form validation using JavaScript
- 26. Illustrate JavaScript Library.

Course designer

Mrs.A.M.Hema, Mr.J.Prakash, Mrs.G.Nalini

THIAGARAJAR COLLEGE, MADURAI – 9. (Re-Accredited with 'A' Grade by NAAC) VALUE EDUCATION

Course Code	Course Title	Category	L	Т	Р	Credit
U20VE21	Value Education	AECC2	2	-	-	1

Year	Semester	Int. Marks	Ext.Marks	Total
First	Second	15	35	50

Preamble

Students acquire knowledge on the basic concepts, components and importance of environment.

Course Outcomes

On the completion of the course the student will be able to

	Course outcomes	Knowledge Level
CO1	Define the values, Self assessment and values needed for self development	K1
CO2	Explain about the good character and good relationships	K2
CO3	Summarize the types of thoughts, developing thought pattern, external influences on thoughts	K1
CO4	Find out the causes of Illusions, Symptoms and stages of stress	К3

K1: Knowledge K2: Understand K3: Apply

Mapping of Course Outcomes with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	L	-	М	-	-
CO2	-	L	М	L	-
CO3	М	М	S	-	-
CO4	-	-	М	L	-

Mapping of Course Outcome with Programme Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PO6
C01	L	-	М	-	-	-
CO2	-	L	М	L	-	L
CO3	М-	Μ	S	-	-	-
CO4	-	-	Μ	L	-	Μ

Blooms taxonomy: Assessment Pattern

	CA		End of
	First	Second	Semester
Knowledge	40%	40%	40%
Understand	40%	40%	40%
Apply	20%	20%	20%

Course Title: Value Education

Unit I

Self Development – Introduction - Definition and Types of Values – Self Assessment – Values needed for self development - Values needed for family life –Principles of happy living

Character development- Good character – Good relationships - Legendary people of highest character – The quest for character –Developing character -The key to good character.

Unit II:

Positive Thinking and Self Esteem - Types of thoughts - Areas of thinking - Developing thought pattern - External influences on Thoughts - Methods to keep outlook positive – Meaning of Self Esteem – Self empowerment.

Stress free living – Illusions and causes - Symptoms and stages of stress – Self confidence– Role models and leadership qualities – Critical thinking - Communication skills – Happy and successful life.

Reference:

Study material / Course material

1. Values for Excellence in Life Compiled by then Curriculum Development Cell Thiagarajar College, Madurai, in collaboration with the Education wing, Brahma Kumaris, Madurai.

M.Sc. Computer Science Programme Code - PCS
THIAGARAJAR COLLEGE, MADURAI – 9. (Re-Accredited with 'A' Grade by NAAC) Curriculum Structure for PG

Semester	Category	No. of Courses	Credit Distribution
I	Core		18
	Elective	1	5
II	Core		18
	Elective	1	5
III	Core		18
	Elective	1	5
IV	Core		18
	Project	1	3
	Total Cre	90	

For Choice Based Credit System (CBCS)

- Choices should be offered for Elective Courses
- Total Credits for Core Courses 72
- Total Credits for Elective Courses 18 (3 Electives + 1 Project)

Knowledge

Acquire an overview of concepts, fundamentals and advancements of science across a range of fields, with in-depth knowledge in at least one area of study. Develop focused field knowledge and amalgamate knowledge across different disciplines.

Complementary skills

Students will be able to engage in critical investigation through principle approaches or methods and through effective information search and evaluation strategies. Employ highly developed conceptual, analytical, quantitative and technical skills and are adept with a range of technologies;

Applied learning

Students will be able to apply disciplinary or interdisciplinary learning across multiple contexts, integrating knowledge and practice. Recognize the need for information; effectively search for, evaluate, manage and apply that information in support of scientific investigation or scholarly debate;

Communication

Communicate effectively on scientific achievements, basic concepts and recent developments with experts and with society at large. Able to comprehend and write reports, documents, make effective presentation by oral and/or written form.

Problem solving

Investigate, design and apply appropriate methods to solve problems in science, mathematics, technology and/or engineering.

Environment and sustainability

Understand the impact of the solutions in ethical, societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

Teamwork, collaborative and management skills

Recognise the opportunities and contribute positively in collaborative scientific research. Engage in intellectual exchange of ideas with researchers of other disciplines to address important research issues

THIAGARAJAR COLLEGE - AUTONOMOUS MADURAI - 625 009.

(Re-Accredited With 'A' Grade by NAAC) Department of Computer Science

M.Sc. Computer Science

(For those joined M.Sc. Computer Science on or after June 2020)

Vision

To be frontier in educating Computer Science and to produce globally competent

Post graduates with moral values committed to build a vibrant nation.

Mission

- □ To strengthen the core competence in Computer Science through analytical learning.
- □ To produce successful post graduates with personal and professional responsibilities and commitment to lifelong learning.
- □ To uplift innovative research in computer science to serve the needs of industry, government and society.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

PEO1	Graduates are prepared to acquire broad knowledge of Computer Science and a focused
	understanding of their area of interest.
PEO2	Graduates will gain the ability to work effectively as a team member and/or leader in
	dynamic professional environment.
PEO3	Graduates will be capable to take up research programmes.
PEO4	Graduates are prepared to survive in rapidly changing technology and engage in life-long
	learning.
PEO5	Graduates work effectively in multi-disciplinary and multi-cultural environments by
	respecting professionalism and ethical practices within organization and society at national
	and international level.

PROGRAMME SPECIFIC OUTCOMES: (PSO)

PSO1	Demonstrate understanding of the principles and working of the hardware and
	software aspects of computer systems.
PSO2	Assess to understand the structure and development methodologies of software systems.
PSO3	Possess professional skills and knowledge of software design process.
PSO4	Familiarity and practical competence with a broad range of programming language
	and open source platforms.
PSO5	Be at ease with the contemporary issues, latest trends in technological development
	and there by innovate new ideas and solutions to existing problems.

THIAGARAJAR COLLEGE – AUTONOMOUS MADURAI – 625 009. (Re-Accredited With "A" Grade by NAAC) Department of Computer Science M.Sc. Computer Science (For those joined M.Sc. Computer Science on or after June 2020) Course Structure

A) <u>Consolidation of Contact Hours and Credits : PG</u>

Semester	Contact Hrs / Week	Credits
I.	30	23
II.	30	23
III.	30	23
IV.	30	21
Total	120	90

B) <u>Curriculum Credits</u>

Core	72 Credits
Major Electives	18 Credits

THIAGARAJAR COLLEGE – AUTONOMOUS MADURAI – 625 009. (Re-Accredited With "A" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE (For those joined M.Sc. Computer Science on or after June 2020) M.Sc. Computer Science Course Structure

I SEMESTER								
							Total	
Code No.	Type of	Title of the paper		Crd	Total	<u>a</u> .	a F	mom
	Paper		wk	•	Hrs	CA	SE	ТОТ
PCS20C11	Core 1	Algorithm	5	4	75	25	75	100
PCS20C12	Core 2	Compiler Design	5	4	75	25	75	100
PCS20C13	Core 3	Advanced Java Programming	5	4	75	25	75	100
PCS20CE11	Elective	Elective Paper -I	5	5	75	25	75	100
PCS20CL11	Core lab1	Lab in Algorithm	5	3	75	40	60	100
PCS20CL12	Core lab2	Lab in Advanced Java Programming	5	3	75	40	60	100
		Total	30	23	450	180	420	600
		II SEMESTER						
						Total		
Code No.	Type of Paper	Title of the paper	Hrs/ wk	Crd	Total Hrs	CA	SE	ТОТ
PCS20C21	Core 4	Distributed Operating System	5	4	75	25	75	100
PCS20C22	Core 5	Advanced DBMS	5	4	75	25	75	100
PCS20C23	Core 6	Machine Learning	5	4	75	25	75	100
PCS20CE21	Elective	Elective Paper –II	5	5	75	25	75	100
PCS20CL21	Core lab3	Lab in Advanced DBMS	5	3	75	40	60	100
PCS20CL22	Core lab4	Lab in Machine Learning	5	3	75	40	60	100
		Total	30	23	450	180	420	600

III SEMESTER								
							Total	
Code No.	Type of Paper	Title of the paper	Hrs/ wk	Crd	Total Hrs	CA	SE	ТОТ
PCS20C31	Core 7	Data Science with Big Data Analytics	5	4	75	25	75	100
PCS20C32	Core 8	Cryptography and Network Security	5	4	75	25	75	100
PCS20C33	Core 9	Advanced Web Technology	5	4	75	25	75	100
PCS20CE31	Elective	Elective Paper -III	5	5	75	25	75	100
PCS20CL31	Core lab5	Lab in Data Science	4	2	60	40	60	100
PCS20CL32	Core lab6	Lab in Advanced Web Technology	4	2	60	40	60	100
PCS20MP31	MPJ	Mini Project & Viva Voce	2	2	30	40	60	100
		Total	30	23	450	220	480	700
		IV SEMESTER		1	1	1	1	1
Code No							Total	
Code No.	Type of Paper	Title of the paper	Hrs/ wk	Crd	Total Hrs	СА	SE	ТОТ
PCS20C41	Core 10	Internet of Things	6	6	90	25	75	100
PCS20C42	Core 11	Object Oriented System Design	6	6	90	25	75	100
PCS20C43	Core 12	Web Services	6	6	90	25	75	100
PCS20PJ41	РЈ	Project & Viva Voce (Elective -IV)	12	3	-	40	60	100
		Total	30	21	270	115	285	400

M.Sc. Computer Science

(For those joined M.Sc. Computer Science on or after June 2020)

List of Electives – First Year only

- 1. Wireless Networks
- 2. Software Project Management
- 3. Security in Computing
- 4. Digital Image Processing
- 5. Cloud Computing
- 6. Data Mining

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title	Category	L	Τ	Р	Credit	
PCS20C11	Design and Analysis of A	Core 1	5			4	
	L – Lecture	T – Tutorial	P - Pr	actica	l		
Year	Semester	Int. Marks	Ext. N	Mark	s]	Fotal
First	First	25	7	5			100

Preamble

Learn Problem solving in Computing applications effectively and Analyze the algorithmic procedure to demonstrate the computational complexity of the algorithms

Prerequisite

Basic Knowledge about data structure and algorithm

Course Outcomes

On the completion of the course the student will be able to

		Knowledge
#	Course Outcome	Level
CO1	Explain Basic Data structure and Analyze the Performance of an Algorithm	K1,K4
CO2	Divide the problem into small pieces and identify sorting and searching technique for a given problem	K2,K3
CO3	Solve Optimization based problems	K1,K3
CO4	Apply dynamic programming technique to solve the problem.	K3,K4
CO5	Discuss Advanced Tree and Graph Applications	K4,K5

K1-Knowledge K2-Understand

derstand K3-Apply

K4- Analyze

K5- Evaluate

Mapping of Course Outcomes with Programme Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	Μ	S	-	Μ	-	Μ
CO2	S	Μ	S	Μ	-	-	S
CO3	Μ	S	S	-	S	S	-
CO4	-	Μ	S	Μ	Μ	-	Μ
CO5	Μ	-	-	Μ	Μ	Μ	S

Thiagarajar College, Madurai. - 39th ACM - Dept. of Comp. Sci. - Syllabus 2020

Mapping of Course Outcomes with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	-	-	-	-
CO2	S	S	-	-	-
CO3	-	Μ	S	-	-
CO4	-	-	-	Μ	-
CO5	-	-	-	Μ	S

Bloom's Taxonomy : Assessment Pattern

Blooms taxonomy							
	CA						
	First	Second	End of Semester				
Knowledge -K1	15% (9)	15% (9)	20% (30)				
Understand -K2	15% (9)	15% (9)	20% (30)				
Apply-K3	30% (18)	30% (18)	20% (30)				
Analyze-K4	20% (12)	20% (12)	20% (30)				
Evaluate-K5	20% (12)	20% (12)	20% (30)				
Total Marks	60	60	150				

Content Unit I

Introduction: Algorithm Definition – Algorithm Specification – Performance Analysis-Asymptotic Notations. Elementary Data Structures: Stacks and Queues – Trees – Dictionaries – Priority Queues – Sets and Disjoint Set Union – Graphs

Unit II

Divide and Conquer: The General Method – Defective Chessboard –Binary Search – Finding The Maximum and Minimum – Merge Sort – Quick Sort – Selection - Strassen's Matrix Multiplication.

Unit III

The Greedy Method: General Method - Container Loading - Knapsack Problem - Tree Vertex Splitting – Job Sequencing with Deadlines - Minimum Cost Spanning Trees - Optimal Storage On Tapes – Optimal Merge Patterns - Single Source Shortest Paths.

Unit IV

Dynamic Programming: The General Method – Multistage Graphs – All-Pairs Shortest Paths – Single-Source Shortest Paths - Optimal Binary Search Trees - String Editing - 0/1 Knapsack - Reliability Design - The Traveling Salesperson Problem - Flow Shop Scheduling. Basic Traversal and Search Techniques: Techniques for Binary Trees – Techniques for Graphs – Cected Components and Spanning Trees

- Biconnected Components and DFS.

Unit V

Backtracking: The General Method – The 8-Queens Problem – Sum of Subsets – Graph Coloring – Hamiltonian Cycles – Knapsack Problem Branch and Bound: Least Cost search - 0/1 Knapsack Problem.

15 hrs.

15 hrs.

15 hrs.

15 hrs.

15 hrs.

Text Book

1. Ellis Horowitz, Satraj Sahni and Sanguthevar Rajasekaran, Fundamentals of Computer Algorithms, Universities Press, Second Edition

Chapters

Unit I : Chapter 1.1,1.2,1.3.4,2.1,2.2,2.3,2.4,2.5,.6 Unit II : Chapter 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8 Unit III: Chapter 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9 Unit IV: Chapter 5.1 – 5.10,6.1-6.4 Unit V: Chapter 7.1-7.6,8.1,8.2

References

- 1. Data Structures Using C Langsam, Augenstien, Tenenbaum, PHI
- 2. Data structures and Algorithms, V.Aho, Hopcropft, Ullman, LPE
- Introduction to design and Analysis of Algorithms S.E.Goodman, ST. Hedetniem-TMH.
- 4. Carlos A.Coello Coello, Gary B.Lamont, David A.Van Veldhuizen, "Evolutionary Algorithms for Solving Multi-Objective Problems", Springer 2nd Edition, 2007.

Web Resources

- 1. <u>https://www.programiz.com/dsa/divide-and-conquer</u> (Divide and Conquer)
- 2. <u>https://www.youtube.com/watch?v=ARvQcqJ_-NY</u> (Greedy Method)
- 3. <u>https://www.youtube.com/watch?v=ewXklhesC-w</u> (Dynamic Programming Technique)
- 4. <u>https://www.hackerearth.com/practice/algorithms/dynamic-programming/introduction-to-dynamic-programming-1/tutorial/</u> (Dynamic Programming Problems)
- 5. <u>https://medium.com/educative/5-dynamic-programming-problems-and-solutions-for-your-next-coding-interview-ad938bce2351</u> (Problem Solving using Dynamic Programming)

Course Designer

Mrs. T.S. Urmila

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title		Category	L	Τ	Р	Credit
PCS20C12	Compiler Design		Core 2	5			4
	L – Lecture	T – Tutorial	P – Pr	actica	ıl		
Year	Semester	Int. Marks	Ext. Marks		s]	Fotal
First	First	25	75			100	

Preamble

Discover Principles, algorithms and techniques that can be used to construct various phases of compiler. Acquire knowledge about finite automata and regular expressions, Learn context free grammars, compiler parsing techniques. Explore knowledge about Syntax directed definitions and translation scheme. Understand intermediate machine representations and actual code generation.

Prerequisite:

Basic knowledge about Computer Architecture

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge
		Level
CO1	Explain Lexical Analysis and Finite Automata concepts	K1,K5
CO2	Describe the Basics of Syntax Analysis and Methodologies	K1,K3
CO3	Analyse Semantic Analysis and applications of syntax directed applications	K3,K4
CO4	Explain Intermediate Code Generation Concepts	K2,K4
CO5	Describe Code Generation and Code optimization	K3,K4

K1-Knowledge K2-Understand K3-Apply K4- Analyze K5- Evaluate

Mapping of Course Outcomes with Programme Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	S	Μ	S	-	Μ
CO2	Μ	Μ	S	Μ	S	-	-
CO3	Μ	Μ	S	S	S	Μ	М
CO4	Μ	Μ	S	-	Μ	-	М
CO5	-	Μ	-	Μ	Μ	Μ	-

Mapping of Course Outcomes with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	-	-	Μ	-
CO2	Μ	S	-	Μ	Μ
CO3	S	Μ	L	-	-
CO4	S	Μ	L	-	-
CO5	-	-	-	Μ	S

Bloom's Taxonomy : Assessment Pattern

Blooms taxonomy	y		
	CA		
	First	Second	End of Semester
Knowledge -K1	15% (9)	15% (9)	20% (30)
Understand -K2	15% (9)	15% (9)	20% (30)
Apply-K3	30% (18)	30% (18)	20% (30)
Analyze-K4	20% (12)	20% (12)	20% (30)
Evaluate-K5	20% (12)	20% (12)	20% (30)
Total Marks	60	60	150

Content

Unit I

Lexical analysis - Language Processors, The Structure of a Compiler, Parameter passing mechanism – Symbol table - The role of the lexical analyzer - Input buffering - Specification of tokens - Recognition of tokens – Finite automata - Regular expression to automata.

Unit II

Syntax Analysis - The role of the parser - Context-free grammars - Writing a grammar - Top down Parsing - Bottom-up Parsing - LR parsers- LALR parsers.

Unit III

Semantic Analysis - Inherited and Synthesized attributes – Dependency graphs – Ordering the evaluation of attributes – S- attributed definitions – L-attributed definitions – Applications of Syntax Directed translation – Syntax Directed translations schemes - Storage organization – Stack allocation of space.

Unit IV

Intermediate Code Generation - Variants of Syntax trees – Three Address code – Types and Declarations - Translation of Expressions – Type checking - Control flow - Back patching - Switch Statements - Procedure calls.

Unit V

Code Generation and Code Optimization - Issues in the design of a code generator - The target language – Address in the Target Code – Basic Block and Flow graphs – Optimization of Basic Blocks - A simple code generator – Peephole Optimization.

15 hrs.

15 hrs.

15 hrs.

15 hrs.

15 hrs.

Text Book

1. Alfred V. Aho, Monica S.Lam, Ravi Sethi and Jeffrey D. Ullman, "Compilers- Principles, Techniques and Tools", Second Edition, Pearson Education Asia, 2009

Chapters:

Unit I : Chapter 1.1,1.2,1.6.6,2.7,3.1,3.,3.3,3.4,3.6,3.7 Unit II : Chapter 4.1.1,4.2,4.3,4.4,4.5,4.6,4.7 Unit III: Chapter 5.1.1,5.2.1,5.2.2,5.2.3,5.2.4,5.3,5.4,7.1,7.2 Unit IV: Chapter 6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9 Unit V: Chapter 8.1,8.2,8.3,8.4,8.5,8.6,8.7

References

1. A.V. Aho, Ravi Sethi, J.D. Ullman, Compilers - Principles, Techniques and Tools, Addison-Wesley, 2003.

2. Fischer Leblanc, Crafting Compiler, Benjamin Cummings, Menlo Park, 1988.

3. Kennath C.Louden, Compiler Construction Principles and Practice, Vikas publishing House, 2004.

4. Allen I. Holub, Compiler Design in C, Prentice Hall of India, 2001.

5. S.Godfrey Winster, S.Aruna Devi, R.Sujatha, "Compiler Design", yesdee Publishers, Third Reprint 2019.

Web Resources

- 1. <u>https://www.tutorialspoint.com/compiler_design/compiler_design_lexical_analysis.htm#:~:t</u> <u>ext=Lexical%20analysis%20is%20the%20first,comments%20in%20the%20source%20cod</u> e. (Lexical Analysis)
- 2. <u>https://www.geeksforgeeks.org/introduction-to-syntax-analysis-in-compiler-design/ (</u>Syntax Analysis)
- 3. <u>https://www.geeksforgeeks.org/semantic-analysis-in-compiler-design/(Semantic Analysis)</u>
- 4. <u>https://www.slideshare.net/TasifTanzim/intermediate-code-generation-compiler-design</u> (Intermediate Code Generation)
- 5. <u>https://www.tutorialspoint.com/compiler_design/compiler_design_code_generation.htm</u> (Code Generation)

Course Designer

Mrs.T.S. Urmila

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title		Category	L	Т	P	Credit
PCS20C13	Advanced Java Programm	Core 3	5			4	
	L – Lecture	T – Tutorial	P - Pr	actica	ıl		
Year	Semester	Int. Marks	Ext. Marks		S]	Fotal
First	First	25	75			100	

Preample

world problem in a programmer's point of view and implement the concepts in real-time projects. To deepen student's programming skills by analyzing the real

Prerequisite

Able to develop a Graphical User Interface (GUI) with Applet and Swing. Develop a Client Server Application with Database Maintenance.

Course Outcome

On the completion of the course the student will be able to

#	Course Outcome	Knowledge
		Level
CO1	Explain the Java Frameworks and Patterns	K1,K2
CO2	Build the Application using AWT Components	K2
CO3	Describe the Networking in Java and JDBC	K2,K3
CO4	Analyze about Server side programming JSP	K2,K3,K4
CO5	Describe about Java Lambda and Jshell	K3,K4,K5

K1-Knowledge K2-Understand K3-Apply K4- Analyze K5- Evaluate

Mapping of Course Outcome with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	Μ	Μ	S	-	Μ
CO2	Μ	Μ	S	-	Μ	Μ	S
CO3	S	Μ	S	Μ	S	Μ	S
CO4	Μ	Μ	S	-	Μ	-	S
CO5	Μ	Μ	Μ	-	Μ	-	-

Mapping of Course Outcome with Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	-	L	-	-
CO2	-	S	L	Μ	Μ
CO3	-	L	-	-	-
CO4	Μ	S	-	-	-
CO5	-	-	-	Μ	S

Blooms Taxonomy

Blooms taxonomy	7		
	CA		
	First	Second	End of Semester
Knowledge -K1	15% (9)	15% (9)	20% (30)
Understand -K2	15% (9)	15% (9)	20% (30)
Apply-K3	30% (18)	30% (18)	20% (30)
Analyze-K4	20% (12)	20% (12)	20% (30)
Evaluate-K5	20% (12)	20% (12)	20% (30)
Total Marks	60	60	150

Content

Unit-I

Collections Modified: Java-Collections Framework -The Interfaces in Collections Framework-The Collection Classes-Methods of Collection Interface-The ArrayList Class-The LinkedList Class-List Interface-ListIterator Interface-Java HashSet Class-LinkedHashSet Class-TreeSet Class-Java Queue Interface-PriorityQueue Class-The Array Dequeue Class-Map Interface-HashMap Class-TreeMap Class-Comparable Interface-Comparator Interface.**Patterns:** Design Patterns in Java-Classification of Design Patterns-Patterns Discussed in Detail-Factory Method Pattern-Prototype Design Pattern-Singleton Design Pattern in Java-Adapter Pattern-Proxy Pattern-Decorator Pattern-Command Pattern-Template Pattern-Mediator Pattern.

Unit-II

Applet Basics Layout: Basics of Applet-Life Cycle of an Applet-Display Methods in Applet-Passing Values Through Parameters-Displaying Images in Applet-Displaying Graphics in Applet-Java Dialog Box-Graphical User Interface-Layout Managers in Java. **AWT Component Class:** AWT Component Classes-Labels-Buttons-Checkboxes-CheckboxGroup- Choice Controls-Lists-Scrollbars-TextField-TextArea-MenuBar. **Event Handling with AWT Components:** Over view of Event Handling-Event Classes-Event Listener Interfaces-Handling MouseEvents-The KeyListener Interface. **Unit-III**

Networking in Java-Java Socket Programming-Socket Class-Java URL Class-Java URL Connection Class-Http URL Connection Class-InetAddress Class. **JDBC**: Introduction to JDBC-JDBC-SQL Syntax-JDBC-Driver types-Steps Involved in JDBC Connection-JDBC-Statments,Prepared Statement and Callable Statement-JDBC-ResultSets-ResultSetMetaData-Transaction Management in JDBC.

Unit-IV

Servlets: Introduction to Servlets-Servlet Packages-HttpServlet Class-Servlets-Exception Handling-Session Tracking in Servlets-Cookies in Servlet-Hidden Form Field-URL Rewriting-Servlet Request Interface-The ServletResponse Interface.**Server Side Programming-JSP:** Introduction to JSP-JSP Architecture-JSP Life Cycle-Components of a JSP page-JSP Comments-JSP Implicit Objects-ControlFlow Statements in JSP-JSP-Directives-JSP-Actions-Scope of JSP Variables-JSP-Implicit Objects-JSP-Exception Handling-JSP for Database Connectivity.

Unit-V

Java Lambda Expressions: Introduction to Java Lambda-Functional Interface in Java Lambda-Method Reference in Java Lambda-Stream API in Java 8 - Optional Class in Java 8 - Nashorn in Java 8 -Base64 Encode and Decode in java 8. **JShell-(RPEL) in Java 9** - Collection Factory Methods in Java 9 – Private Interface in Java 9 -Dimond Operator for Anonymous Inner Class-Multiresolution Image API in Java 9.

Te 1.	xt Book E Ramaraj,P Ltd, 2020.	Geetha,S MuthuKumaran, "Advanced Java Programming", YesDee Publishing Pvt
Chapte	ers	
Unit-I	-	Chapters-2, 3
Unit-II	-	Chapters-4, 5, 6
Unit-II	I -	Chapters-8, 9
Unit-IV	/ -	Chapters-10, 11
Unit-V	_	Chapters-17, 18

References

1. Paul Deitel and Harvey Deitel, "Java:HowtoProgram", Prentice Hall Publishers; 9th Edition.

2. JanGraba,"An Introduction to Network Programming with Java-Java 7 Compatible", 3rd Edition, Springer.

Web Resources

- 1. <u>www.javapoint.com</u> (Java)
- 2. <u>www.javacodegeeks.comm</u> (Java Code)
- 3. docs.oracle.com/en/java (Java SE)

Course designer

Mr.M.Muthalagu

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title		Category	L	Т	Р	Credit
PCS20CL11	Lab in Algorithm		Core Lab1			5	3
	L – Lecture	T – Tutorial	P - Pr	actica	ıl		
Year	Semester	Int. Marks	Ext. N	Mark	S]	Гotal
First	First	40	6	50			100

Preamble:

Different Techniques of Solution to the Problem using Divide and conquer, Dynamic Programming, Greedy Method and Back Propagation.

Prerequisite

Basic knowledge of Datastructures like Stack, Queue, Linked List, Sorting and Search Techniques.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge
		Level
CO1	Analyze the Searching Techniques	K1
CO2	Discuss about Sorting Techniques	K2,K3
CO3	Analyze the Shortest Path Finding using Different Algorithms	K3,K4
CO4	Evaluate Travelling Salesman problems, Minimum Cost Spanning Tree	K4,K5
C05	Build the Graphical Applications	K3,K4

K1-Knowledge K2-Understand K3-Apply K4- Analyze K5- Evaluate

Mapping Course Outcome with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	S	-	S	-	Μ
CO2	S	Μ	S	Μ	S	-	S
CO3	S	М	Μ	-	S	Μ	Μ
CO4	Μ	Μ	S	-	Μ	Μ	S
CO5	Μ	-	Μ	Μ	Μ	-	Μ

Mapping Course Outcome with Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	-	Μ	-	-
CO2	Μ	S	-	Μ	Μ
CO3	S	Μ	L	-	-
CO4	S	Μ	L	-	-
CO5	-	-	-	Μ	S

Blooms Taxonomy

	CA		
	First	Second	End of Semester
Knowledge -K1	15% (9)	15% (9)	20% (30)
Understand -K2	15% (9)	15% (9)	20% (30)
Apply-K3	30% (18)	30% (18)	20% (30)
Analyze-K4	20% (12)	20% (12)	20% (30)
Evaluate-K5	20% (12)	20% (12)	20% (30)
Total Marks	60	60	150

Content

- 1. Implement Stack and Queue
- 2. Find an Element using Binary Search
- 3. Sort n integers using Quick Sort and Merge Sort
- 4. Solve Knapsack problem using Dynamic and Greedy Method
- 5. Finding the shortest path using Dijkstra's, Kruscal, Prim's algorithms
- 6. Implement Travelling Sales Person Problem using Dynamic Programming
- 7. Perform various tree traversal algorithms for a given tree
- 8. Find Minimum Cost Spanning Tree of a given undirected graph
- 9. Design and Implement the presence of Hamiltonian Cycle in the undirected graph
- 10. Implement N Queens problem using Back Tracking

Course designer

Mrs. T.S. Urmila

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title	Category	L	Т	Р	Credit	
			Core	-	-	5	3
PCS20CL12	Lab in Advanced Java Pro	Lab2					
	L – Lecture	T – Tutorial	P – Pr	actica	ıl		
Year	Semester	Int. Marks	Ext. Marks]	Fotal	
First	First	40	60			100	

Preamble:

To enable the students to learn the ethical, historical, environmental and technological aspects of Advanced Java Programming and how it impacts the social and economic development of society.

Prerequisite

Develop a Client-Server Application with Database Maintenance.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Demonstrate Array Lists & Linked List.	K1,K2
CO2	Construct Priority Queue & Comparable Interface.	K1,K3
CO3	Develop Applet and AWT Components.	K4
CO4	Build JDBC and Servlets Programming.	K3,K4
CO5	Develop client/server Programming with JSP and Java 8.	K3,K4
K1 Kno	wladge K2 Understand K2 Apply K4 A	nalwaa V5 Evoluata

K1-Knowledge K2-Understand K3-Apply K4- Analyze K5- Evaluate

Mapping Course Outcome with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	S	-	S	Μ	Μ
CO2	Μ	Μ	S	Μ	S	-	S
CO3	S	Μ	Μ	-	S	Μ	Μ
CO4	Μ	Μ	S	S	Μ	Μ	S
CO5	Μ	-	Μ	-	Μ	-	Μ

Mapping Course Outcome with Program Specific Outcomes								
	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	S	-	L	-	-			
CO2	Μ	-	-	S	-			
CO3	Μ	L	-	-	S			
CO4	-	-	Μ	-	S			
CO5	-	Μ	-	-	S			

Bloom's Taxonomy

Blooms taxonomy								
	CA							
	First	Second	End of Semester					
Knowledge -K1	15% (9)	15% (9)	20% (30)					
Understand -K2	15% (9)	15% (9)	20% (30)					
Apply-K3	30% (18)	30% (18)	20% (30)					
Analyze-K4	20% (12)	20% (12)	20% (30)					
Evaluate-K5	20% (12)	20% (12)	20% (30)					
Total Marks	60	60	150					

Content

- 1. Program to demonstrate Array List.
- 2. Program to demonstrate Linked List.
- 3. Program to demonstrate Priority Queue.
- 4. Program to demonstrate Comparable Interface.
- 5. Program to demonstrate Factory Method Pattern.
- 6. Program to demonstrate Prototype Design Pattern.
- 7. Program to demonstrate Displaying Graphics in Applet.
- 8. Program to demonstrate Border Layout Program in Applet.
- 9. Program to demonstrate Menu bar in AWT Component Class.
- 10. Program to demonstrate Mouse Events in Event Handling with AWT Components.
- 11. Program to demonstrate Java Socket Programming.
- 12. Program to demonstrate Java Datagram Packet.
- 13. Program to demonstrate JDBC for inserting values into the table student using the stored procedure and callable statement.
- 14. Program to demonstrate JDBC for updating values into the table student using the stored procedure and callable statement.
- 15. Program to demonstrate JDBC for deleting values into the table student using the stored procedure and callable statement.
- 16. Program to demonstrate JDBC for selecting records.
- 17. Program to demonstrate JDBC for metadata.
- 18. Program to demonstrate JDBC for Transaction and Rollback.
- 19. Program to demonstrate the life cycle of Servlet.
- 20. Program to demonstrate the Exception Handling in Servlet.
- 21. Program to demonstrate in JSP for Actions.
- 22. Program to demonstrate in JSP for looping statements.
- 23. Program to demonstrate in JSP for Scope of Variables.
- 24. Program to demonstrate the use of intermediate function in Stream API in Java 8.
- 25. Program to demonstrate the use of terminal function in Stream API in Java 8.

Course Designer

Mr.M.Muthalagu

THIAGARAJAR COLLEGE, MADURAI – 9 (Re-Accredited with "A" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title	Category	L	Т	P	Credit	
PCS20C21	Distributed Opera	Core 4	5			4	
	T – Tutorial	P - Pr	actica	ıl			
Year	Semester	Int. Marks	Ext. Marks		S	ſ	Fotal
First	Second	25	75			100	

Preamble

To provide an in in-depth knowledge in Distributed Operating Systems Concepts

Prerequisite:

Students are expected to know and understand the fundamentals of operating system concepts.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Acquire the knowledge of process synchronization mechanisms and	K2,K3
	deadlock concept	
CO2	Introduce the concept of distributed Operating system and distributed	K1,K2
	mutual exclusion	
CO3	Analyze the mechanisms of distributed resource management	K4
CO4	Evaluate the fault tolerance issues	K2,K5
CO5	Analyse about processor scheduling	K2,k3

- K1-Knowledge
- **K2-Understand**

K3-Apply K4-Ar

K4-Analyze K5-Evaluate

Mapping Course Outcome with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	M	-	М	-	-	М
CO2	М	М	М	-	Μ	Μ	Μ
CO3	S	М	S	М	Μ	-	-
CO4	S	М	S	-	Μ	М	М
CO5	S	М	М	М	Μ	-	Μ

Thiagarajar College, Madurai. - 39th ACM - Dept. of Comp. Sci. - Syllabus 2020

Mapping Course Outcome with Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Μ	-	S	S
CO2	Μ	-	-	S	Μ
CO3	-	S	S	-	-
CO4	S		-	Μ	-
CO5	-	S	-	Μ	Μ

Bloom's Taxonomy

	CA		
	First	Second	End of Semester
Knowledge -K1	15% (9)	15% (9)	20% (30)
Understand -K2	15% (9)	15% (9)	20% (30)
Apply-K3	30% (18)	30% (18)	20% (30)
Analyze-K4	20% (12)	20% (12)	20% (30)
Evaluate-K5	20% (12)	20% (12)	20% (30)
Total Marks	60	60	150

Content

UNIT I

Introduction –Functions of an Operating System –Design Approaches –Why advanced OS-Types of Advanced Operating System – Synchronization Mechanisms – Introduction-concepts of a Process – Concurrent Processes – The Critical Section Problem –Process Deadlocks-Introduction-Preliminaries- Models of Deadlock-Models of resources- A graph theoretic model of a system statenecessary and sufficient Conditions for a Deadlock- System with single-unit requests, Consumable Resources, Reusable Resources.

UNIT II

Architectures of Distributed Systems-Introduction-Motivations-System Architecture Types-Distributed OS- Issues- Communication Networks and Primitives – Theoretical Foundations: Inherent Limitations –Lamport's Logical Clocks, Vector Clock, Casual ordering of messages- Global State-Cuts of a Distributed Computation – Termination Detection – Distributed Mutual Exclusion-Distributed Deadlock Detection- Agreement Protocols

UNIT III

Distributed Resource Management – Distributed File Systems – Architecture – Mechanisms-Design Issues – Distributed shared Memory – Architecture – Algorithm – memory coherence-Cohenrence Protocols – Design Issues – Distributed Scheduling – Issues – Components –stabilityload distributing Algorithms.

15 hrs

15 hrs

15 hrs

UNIT IV

Failure Recovery and Fault Tolerance -Recovery- Fault Tolerance – Issues-Atomic actions and committing-commit protocols- Nonblocking Commit Protocols-voting protocols- Dynamic voting Protocols

UNIT V

15 hrs

15 hrs

Multiprocessor Operating Systems- Structures – Design Issues – Threads – Process Synchronization – Processor Scheduling – Memory management – Reliability/Fault Tolerance – Database Operating Systems – Introduction- what is different- Requirements of a database operating systems.

Text Book

1. Mukesh Singhal, N.G.Shivaratri, "Advanced Concepts in Operating Systems", McGraw Hill 2000.

Chapters

- Unit-I : Chapter 1.1 to 1.5, 2.1 to 2.4, 3.1 to 3.9
- Unit-II : Chapter 4.1 to 4.7, 5.1 to 5.8, 6.1 to 6.14, 7.1 to 7.9, 8.1 to 8.5
- Unit-III : Chapter 9.1 to 9.4, 10.1 to 10.6, 11.1 to 11.6
- Unit-IV : Chapter 12.1 to 12.11, 13.1 to 13.7
- Unit-V : Chapter 17.1 to 17.8, 18.1 to 18.3

References

- 1. Abraham Silberschatz, Peter B.Galvin, G.Gagne, "Operating Concepts", 6th Edition, Addison Wesley publications, 2003.
- Andrew S.Tanenbaum, "Modern Operating Systems", 2nd Edition, Addison Wesley, 2001

Web Resources

- 1. https://www.w3schools.in/operating-system-tutorial/distributed-system/ (**Distributed System in OS**)
- 2. https://docs.oracle.com/cd/E19957-01/820-0699/drmaa-intro/index.html (Distributed Resource Management Application API)
- 3. https://expolab.org/ecs265-fall-2019/slides/3%20 %20Nonblocking%20commit %20protocols.pdf (Nonblocking commit protocols)

Course Designer

Dr.P.Manickam

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

			- 00				
Course code	Course Title		Category	L	T	P	Credit
PCS20C22	Advanced I	Core 5	5	-	-	4	
	L – Lecture	T – Tutorial	P – Pr	actica	al		
Year	Semester	Int. Marks	Ext. N	Mark	S]	Fotal
First	Second	25	7	/5			100

Preamble

Acquire Knowledge of Database Models, Applications of Database Models and Emerging Trends.

Prerequisite:

Students are expected to know and understand the fundamentals of DBMS concepts

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Demonstrate the Database Design and Relational Database Design	K2,K3
CO2	Introduce the Query Processing and Distributed Database	K1,K2
CO3	Analyze the Query Optimization and Spatial and Temporal Data and Mobility	K4
CO4	Evaluate Structure of XML Data	K2,K5
CO5	Explain the Data Warehousing and Mining	K2,k3

K1-Knowledge

K2-Understand

K3-Apply K4-Analyze

K4-Analyze K5-Evaluate

Mapping Course Outcome with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	S	-	S	-	-
CO2	Μ	Μ	S	-	Μ	-	Μ
CO3	S	Μ	Μ	Μ	S	Μ	S
CO4	Μ	Μ	-	Μ	Μ	-	Μ
CO5	S	Μ	-	Μ	Μ	Μ	Μ

Mapping Course Outcome with Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Μ	-	S	S
CO2	Μ	-	-	S	Μ
CO3	-	S	S	-	-
CO4	S	-	-	Μ	-
CO5	-	S	-	Μ	Μ

Bloom's Taxonomy

Blooms taxonomy							
	CA						
	First	Second	End of Semester				
Knowledge -K1	15% (9)	15% (9)	20% (30)				
Understand -K2	15% (9)	15% (9)	20% (30)				
Apply-K3	30% (18)	30% (18)	20% (30)				
Analyze-K4	20% (12)	20% (12)	20% (30)				
Evaluate-K5	20% (12)	20% (12)	20% (30)				
Total Marks	60	60	150				

Content

Unit-I

Database Design: Database Design and the E-R Model-overview of the Design Process-The Entity Relationship Model-constraints-Removing Redundant Attributes in Entity Sets-Entity Relationship Diagrams-Reduction to Relational Schemas-Entity Relationship Design Issues-Extended E-R Features-Alternative Notations for Modelling Data-Other Aspects of Database Design. **Relational Database Design:** Features of Good Relational Designs-Atomic Domains and First Normal Form-Decomposition Using Functional Dependencies-Functional-Dependency Theory-Algorithm for Decomposition-Decomposition Using Multivalued Dependencies-More Normal Forms-Database Design Process-Modeling Temporal Data.

Unit-II

Query Processing: Overview-Measures of Query Cost-Selection Operation-Sorting-Join Operation-Other Operations-Evaluation of Expressions.**Distributed Databases:** Homogenous and Heterogeneous Databases-Distributed Data Storage-Distributed Transactions-Commit Protocols-Concurrency Control in Distributed Databases-Availability-Distributed Query Processing-Heterogeneous Distributed Databases-Cloud-Based Databases-Directory Systems.

Unit-III

Query Optimization: Overview-Transformation of Relational Expressions-Estimating Statistics of Expression Results-Choice of Evaluation Plans-Materialized Views-Advanced Topics in Query Optimization.**Spatial and Temporal Data and Mobility:** Motivation-Time in Databases-Spatial and Geographic Data –Multimedia Databases-Mobility and Personal Databases.

Unit-IV

XML: Motivation-Structure of XML Data-XML Document Schema-Querying and Transformation-Application Program Interfaces to XML-Storage of XML Data-XML Applications.

15 Hrs

15 Hrs

15 Hrs

15 Hrs

Unit-V

15 Hrs

Data Warehousing and Mining: Decision Support Systems-Data Warehousing-Data Mining Classification-Association Rules-Other Types of Associations-Clustering-Other Forms of Data Mining-Information Retrieval: overview-Relevance Ranking Using Terms-Relevance Using Hyperlinks-Synonyms, Homonyms and Ontologies - Indexing of Documents-Measuring Retrieval Effectiveness.

Text Book

1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Sixth Edition, Tata McGraw Hill, 2013.

Chapters

Unit-I	-	Chapters-7, 8
Unit-II	-	Chapters-12, 19
Unit-III	-	Chapters-13, 25
Unit-IV	-	Chapters-23
Unit-V	-	Chapters-20

References

- 1. C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.
- 2. RamezElmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Fifth Edition, Pearson, 2008.
- 3. Raghu Ramakrishnan, "Database Management Systems", Fourth Edition, Tata McGraw Hill, 2010.
- 4. G.K.Gupta, "Database Management Systems", Tata McGraw Hill, 2011.

Web Resources

- 1. <u>https://www.tutorialspoint.com/dbms/</u> (DBMS)
- 2. https://www.tankonyvtar.hu/...advanced_database_systems/20... (Advanced DBMS)

Course Designer

Mr.M.Muthalagu

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title		Category	L	Т	Р	Credit
PCS20C23	Machine Lea	Core 6	5			4	
	L – Lecture	T – Tutorial	P – Pr	actica	ıl		
Year	Semester	Int. Marks	Ext. N	Mark	s]	Fotal
First	Second	25	7	'5			100

Preamble

To Learn about Machine Intelligence and Machine Learning applications. To implement and apply machine learning algorithms to real-world applications. To identify and apply the appropriate machine learning technique to classification, pattern recognition, optimization and decision problems. To understand how to perform valuation of learning algorithms and model selection.

Prerequisite:

Have a good understanding of the fundamental issues and challenges of machine learning: data, model selection, model complexity, etc. Have an understanding of the strengths and weaknesses of many popular machine learning approaches. Appreciate the underlying mathematical relationships within and across Machine Learning algorithms and the paradigms of supervised and un-supervised learning. Be able to design and implement various machine learning algorithms in a range of real-world applications.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Acquire the Learning Problems	K1,K2
CO2	Analyze the Neural Network Representation	K1,K2
CO3	Describe the Bayes Theorem Concept learning	K2,K3
CO4	Analyze the Instance Based Learning	K2,K3,K4
CO5	Analyze the Advanced Learning	K3,K4,k5

K1-Knowledge

K2-Understand

K3-Apply K4-

K4-Analyze K5-Evaluate

S **CO2** Μ S Μ

PO1

S

Μ

Μ

CO1

CO3

CO4

CO5

Mapping Course Outcome with Program Outcomes

Mapping Course Outcome with Program Specific Outcomes

PO2

Μ

Μ

Μ

Μ

PO3

S

-

S

-

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	-	L	-	-
CO2	-	S	L	-	-
CO3	-	L	-	-	-
CO4	-	Μ	-	S	-
CO5	-	S	-	Μ	S

PO4

Μ

-

Μ

-

PO5

S

Μ

S

Μ

Μ

PO7

Μ

S

-

Μ

-

PO6

Μ

Μ

-

Bloom's Taxonomy

Blooms taxonomy							
	CA						
	First	Second	End of Semester				
Knowledge -K1	15% (9)	15% (9)	20% (30)				
Understand -K2	15% (9)	15% (9)	20% (30)				
Apply-K3	30% (18)	30% (18)	20% (30)				
Analyze-K4	20% (12)	20% (12)	20% (30)				
Evaluate-K5	20% (12)	20% (12)	20% (30)				
Total Marks	60	60	150				

Content UNIT I

INTRODUCTION: Learning Problems– Perspectives and Issues– Concept Learning– Version Spaces and Candidate Eliminations – Inductive bias - Decision Tree learning-Representation-Algorithm -Heuristic Space Search.

UNIT II

NEURAL NETWORKS AND GENETIC ALGORITHMS: Neural Network Representation-Problems-Perceptrons-Multilayer Networks and Back Propagation Algorithms-Advanced Topics-Genetic Algorithms- Hypothesis Space Search - Genetic Programming - Models of Evaluation and Learning.

UNIT III

BAYESIAN AND COMPUTATIONAL LEARNING: Bayes Theorem – Concept Learning– Maximum Likelihood-Minimum Description Length Principle-Bayes Optimal Classifier-Gibbs Algorithm-Naïve Bayes Classifier - Bayesian Belief Network - EM Algorithm - Probability Learning–Sample Complexity–Finite and Infinite Hypothesis Spaces – Mistake Bound Model.

15 Hrs

15 Hrs

15 Hrs

UNIT IV

INSTANT BASED LEARNING: K- Nearest Neighbor Learning– Locally weighted Regression – Radial Basis Functions – Case Based Learning.

UNIT V

ADVANCED LEARNING: Learning Sets of Rules–Sequential Covering Algorithm– Learning Rule Set – First Order Rules– Sets of First Order Rules– Induction on Inverted Deduction–Inverting Resolution–Analytical Learning– Perfect Domain Theories– Explanation Base Learning– FOCL Algorithm – Reinforcement Learning– Task – Q-Learning–Temporal Difference Learning.

Text Book

1. Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private Limited, 2013. Chapters

Unit-I	-	Chapters-1,2, 3
Unit-II	-	Chapters-4, 5
Unit-III	-	Chapters-6, 7
Unit-IV	-	Chapters-8
Unit-V	-	Chapters-10,11,13

References

- 1. EthemAlpaydin, Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press 2004.
- 2. Stephen Marsland, Machine Learning: An Algorithmic Perspective, CRC Press, 2009.
- 3. MichaelAffenzeller,StefanWagner,AndreasBeham,"GeneticAlgorithmsandGeneticProgramming ", CRC Press Taylor and Francis Group.

Web Resources

- 1. <u>https://www.cs.ubbcluj.ro/~gabis/ml/ml-books/McGrawHill%20-%20Machine%20Learning%20-</u> <u>Tom%20Mitchell.pdf</u> (machine learning)
- 2. http://www.cs.cmu.edu/~tom/mlbook.html (machine learning text book)
- 3. <u>https://cse.iitkgp.ac.in/~pabitra/course/cs674.html</u>(Machine Learning Course)

Course Designer

Mr.M.Muthalagu

15 Hrs

15 Hrs

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title	Category	L	Τ	P	Credit	
			Core	5			3
PCS20CL21	Lab in Advanced DB	Lab3					
L – Lecture T – Tutorial			P – Pr	actica	ıl		
Year	Semester	Int. Marks	Ext. I	Mark	s]	Fotal
First	Second	40	6	50			100

Preamble

Acquire Knowledge of various Databases, Applications of Data mining and Emerging Trends.

Prerequisite:

Students are expected to know and understand the fundamentals of DBMS concepts

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Explain the Distributed Database for Bookstore	K2,K4
CO2	Illustrate the Object Oriented Database – Extended Entity Relationship	K1,K2
CO3	Analyze Implementation of an Efficient Query Optimizer	K2
CO4	Analyze the Designing XML Schema for Company Database	K2.K4
CO5	Evaluate the Working of WEKA Tool	K3,K5

K1-Knowledge K2-Understand K3-Apply K4-Analyze K5-Evaluate

Mapping Course Outcome with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	S	-	S	Μ	-
CO2	Μ	Μ	S	Μ	S	-	-
CO3	Μ	М	Μ	-	S	М	Μ
CO4	Μ	Μ	S	S	Μ	Μ	S
CO5	Μ	-	-	-	Μ	-	Μ

Mapping Course Outcome with Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	-	L	-	-
CO2	-	S	Μ	-	-
CO3	S	L	-	-	-
CO4	-	Μ	-	S	-
CO5	-	S	-	Μ	S

Bloom's Taxonomy

Blooms taxonomy								
	CA							
	First	Second	End of Semester					
Knowledge -K1	15% (9)	15% (9)	20% (30)					
Understand -K2	15% (9)	15% (9)	20% (30)					
Apply-K3	30% (18)	30% (18)	20% (30)					
Analyze-K4	20% (12)	20% (12)	20% (30)					
Evaluate-K5	20% (12)	20% (12)	20% (30)					
Total Marks	60	60	150					

Content

- 1. Distributed Database for Bookstore.
- 2. Deadlock Detection Algorithm for distributed database using wait- for graph.
- 3. Object Oriented Database Extended Entity Relationship. (EER)
- 4. Parallel Database University Counselling for Engineering colleges.
- 5. Parallel Database Implementation of Parallel Join & Parallel Sort.
- 6. Active Database Implementation of Triggers & Assertions for Bank Database.
- Deductive Database Constructing Knowledge Database for Kinship Domain. (Family Relations)
- 8. Study and Working of WEKA Tool.
- 9. Query Processing Implementation of an Efficient Query Optimize.
- 10. Designing XML Schema for Company Database.

Course Designer

Mr.M.Muthalagu

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title		Category	L	Τ	Р	Credit
			Core	5			3
PCS20CL22	Lab in Machine	Lab4					
	L – Lecture	T – Tutorial	P – Pr	actica	l		
Year	Semester	Int. Marks	Ext. N	Mark	s]	Total
First	Second	40	6	60			100

Preamble

Make use of Data sets in implementing the machine learning algorithms. Implement the machine learning concepts and algorithms in any suitable language of choice.

.Prerequisite:

The programs can be implemented in either JAVA or Python.

For Problems 1 to 6 and 10, programs are to be developed without using the built-in classes or APIs of Java/Python. Data sets can be taken from standard repositories

(https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Implement and demonstrate the FIND-S algorithm	K2,K4
CO2	Demonstrate the working of the decision tree based ID3 algorithm	K1,K2
CO3	Construct a Bayesian network considering medical data	K2
CO4	Implement k-Nearest Neighbour algorithm	K2.K4
CO5	Implement the non-parametric Locally Weighted Regression algorithm	K3,K5

. .

K1-Knowledge

K2-Understand K3-Apply

K4-Analyze K5-Evaluate

Mapping Course Outcome with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	S	-	S	Μ	Μ
CO2	Μ	Μ	-	Μ	-	-	-
CO3	S	Μ	Μ	-	S	Μ	Μ
CO4	Μ	Μ	S	S	Μ	Μ	S
CO5	Μ	Μ	Μ	-	Μ	-	Μ
Mapping Course Outcome with Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	-	L	-	-
CO2	-	S	Μ	-	-
CO3	S	L	-	-	-
CO4	-	Μ	-	S	-
CO5	-	S	-	Μ	S

Bloom's Taxonomy

Blooms taxonomy

Dioonis taxonom	y		
	CA		
	First	Second	End of Semester
Knowledge -K1	15% (9)	15% (9)	20% (30)
Understand -K2	15% (9)	15% (9)	20% (30)
Apply-K3	30% (18)	30% (18)	20% (30)
Analyze-K4	20% (12)	20% (12)	20% (30)
Evaluate-K5	20% (12)	20% (12)	20% (30)
Total Marks	60	60	150

Content

1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.

- **2.** For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
- **3.** Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- **4.** Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
- 5. Write a program to implement the naïve Bayesian classifier for a sample training dataset stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- **6.** Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
- 7. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
- 8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using *k*-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
- **9.** Write a program to implement *k*-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
- **10.** Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Course Designer

Mr.M.Muthalagu

Thiagarajar College, Madurai. - 39th ACM - Dept. of Comp. Sci. - Syllabus 2020

THIAGARAJAR COLLEGE, MADURAI – 9

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title		Category	L	Т	P	Credit
PCS20PCE1	Wireless Net	Elective	5	-	-	5	
	L – Lecture	T – Tutorial	P - Pr	actica	ıl		
Year	Semester	Int. Marks	Ext. N	Mark	s]	Fotal
First	I/II	25	7	5			100

Preamble

To provide an in-depth knowledge in Wireless and mobile communication system, Wireless LAN, Mobile ad hoc network

Prerequisite:

Students are expected to know and understand the concepts of wireless networks and its classification.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Explain the wireless transmission	K1
CO2	Describe about different Telecommunication Systems	K2,K3
CO3	Analyze the wireless LAN Technologies	K4
CO4	Evaluate the mobile IP and protocols	K2,K5
CO5	Discuss about Mobile Transport layer	К2

K1-Knowledge

K2-Understand

K3-Apply K4-Ana

K4-Analyze K5-Evaluate

Mapping Course Outcome with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Μ	Μ	-	Μ	Μ	-	Μ
CO2	Μ	-	S	-	Μ	Μ	Μ
CO3	S	Μ	Μ	Μ	S	Μ	S
CO4	Μ	Μ	S	-	Μ	-	S
CO5	S	Μ	Μ	-	Μ	Μ	Μ

Mapping Course Outcome with Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Μ	S	Μ	S
CO2	Μ	-	-	-	-
CO3	-	S	S	-	-
CO4	S	-	Μ	-	-
CO5	-	-	Μ	Μ	Μ

Bloom's Taxonomy

Blooms taxonomy								
	CA							
	First	Second	End of Semester					
Knowledge -K1	15% (9)	15% (9)	20% (30)					
Understand -K2	15% (9)	15% (9)	20% (30)					
Apply-K3	30% (18)	30% (18)	20% (30)					
Analyze-K4	20% (12)	20% (12)	20% (30)					
Evaluate-K5	20% (12)	20% (12)	20% (30)					
Total Marks	60	60	150					

Content

Unit I

Wireless Transmission- Frequencies for Radio Transmission- Signals-Antennas-Signal Propagation-Multiplexing- Modulation-Spread Spectrum-Cellular Systems-Medium Access Control: Motivation for a specialized MAC- SDMA-FDMA-TDMA-CDMA-Comparison of S/T/F/CDMA

Unit II

Telecommunication Systems- GSM-DECT-TETRA-UMTS and IMT-2000- Satellite Systems-History-Applications-Basics-Routing-Localization-Handover

Unit III

Wireless LAN – Infra red vs radio transmission-Infrastructure and ad-hoc networks- IEEE 802.11-HIPER LAN-Historical: HIPERLAN1- WATM, BRAN, HiperLAN2- Bluetooth

Unit IV

Mobile Network Layer - Mobile IP-IP Packet Delivery, Agent Discovery, Registration-Tunneling and Encapsulation-Optimizations- Reverse tunnelling-IPv6-IP micro-mobility support-Dynamic host configuration protocol- Mobile adhoc networks

Unit V

Mobile Transport Layer - Traditional TCP: Congestion Control, slow start-Fast Retransmit/Fast Recovery, Implications Of Mobility - Classical TCP Improvements-TCP over 2.5/3G Wireless Networks-Performance enhancing proxies.

15 hrs.

15 hrs.

15 hrs.

15 hrs.

15 hrs.

Text Book

1. Jochen H.Schiller, "Mobile Communications", Second Edition, Pearson education, 2012.

Chapters

 Unit-I
 : Chapter 2.1 to 2.8, 3.1 to 3.6

 Unit-II
 : Chapter 4.1 to 4.4, 5.1 to 5.6

 Unit-III
 : Chapter 7.1 to 7.5

 Unit-IV
 : Chapter 8.1 to 8.3

 Unit-V
 : Chapter 9.1 to 9.4

References

- 1. Erik Dahlman, Stefan Parkvall, Johan Skold And Per Beming, "3G Evolution HSPA and LTE For Mobile Broadband", Second Edition, Academic Press, 2008.
- 2. Anurag Kumar, D.Manjunath, Joy Kuri, "Wireless Networking", First Edition, Elsevier 2011.
- 3. Simon Haykin , Michael Moher, David Koilpillai, "Modern Wireless Communications", First Edition, Pearson Education, 2013.
- 4. David G. Messerschmitt, "Understanding Networked Applications", Elsevier, 2010.

Web Resources

- 1. https://www.cse.wustl.edu/~jain/cis788-97/ftp/wireless_atm/index.html (Wireless ATM)
- 2. https://commsbrief.com/difference-between-gsm-umts-lte/ (GSM,UMTS)
- 3. https://medium.com/@sarpkoksal/core-network-evolution-3g-vs-4g-vs-5g-7738267503c7 (Evolution of Core Network)

Course Designer

Dr.P.Manickam

THIAGARAJAR COLLEGE, MADURAI – 9

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title		Category	L	Т	P	Credit
PCS20PCE2	Software Project N	Elective	5			5	
	L – Lecture	T – Tutorial	P - Pr	actica	l	•	
Year	Semester	Int. Marks	Ext. Marks]	Fotal	
First	I/II	25	7	5			100

Preamble

To provide an in-depth knowledge related to demonstrate the Software project management concepts and process models.

Prerequisite:

Students are expected to know and understand the project and its basic requirements

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Explain the relationship among projects	K1,K2
CO2	Analyze the process models	K2,K3
CO3	Describe the project management knowledge areas	K4
CO4	Evaluate the project cost management	K2,K5
CO5	Analyze about risk management	K2,k3

K1-Knowledge K2-Understand K3-Apply K4-Analyze K5-Evaluate

Mapping Course Outcome with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	Μ	Μ	Μ	S	-	Μ
CO2	Μ	Μ	S	-	Μ	Μ	S
CO3	S	Μ	S	Μ	S	Μ	S
CO4	Μ	-	Μ	Μ	Μ	-	S
CO5	Μ	Μ	Μ	Μ	Μ	Μ	Μ

Mapping Course Outcome with Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Μ	S	-	S
CO2	Μ	-	-	Μ	Μ
CO3	-	S	S	-	-
CO4	S	-	Μ	-	-
CO5	-	-	Μ	Μ	Μ

Bloom's Taxonomy

Blooms taxonomy							
	CA						
	First	Second	End of Semester				
Knowledge -K1	15% (9)	15% (9)	20% (30)				
Understand -K2	15% (9)	15% (9)	20% (30)				
Apply-K3	30% (18)	30% (18)	20% (30)				
Analyze-K4	20% (12)	20% (12)	20% (30)				
Evaluate-K5	20% (12)	20% (12)	20% (30)				
Total Marks	60	60	150				

Content

Unit I

15 hrs.

Project Management Framework: Introduction: Project - Project management - Relationship among Project, Program and Portfolio management - Project and operations management- Role of project manager - Project management body of knowledge - Enterprise Environmental factors. Project life cycle and Organization: Overview of project life cycle - Projects vs Operational Work -Stakeholders - Organizational influences on project management. The Standard for Project Management of a Project: Project management processes for a project: Common project management process interactions - Projects management process groups - Initiating process group - planning process group - Executing process group - Monitoring and controlling process group - Closing process group.

Unit II

15 hrs.

Project Planning: Step wise project planning- Select Project-Identify Project Scope and objectives-Identify Project Infrastructure- Analyse Project characteristics- Identify Project Products and activities- Estimate effort for each activity- Identify Activity Risks- Allocate Resources-Review/Publicize plan-Execute plan/lower levels of planning-Selection of an appropriate project approach: Build or Buy-choosing methodologies and technologies-software processes and process models- Choice of process models – Structure versus Speed of delivery – The Waterfall model –The Spiral Model- Software prototyping – Other ways of categorizing prototypes – Incremental Delivery-Atern /Dynamic Systems Development method –Rapid Application Development-Agile Methods-Extreme Programming(XP)-Scrum-Managing Iterative Processes- Selecting the most appropriate process model

Unit III

The Project Management Knowledge Areas: Project integration management: Develop project charter - Develop project management plan - Direct and manage project execution - Monitor and control project work - Perform integrated change control - Close project or phase. Project scope management: Collect requirements - Define Scope - Create WBS - Verify Scope - Control Scope. Project time management: Define activities - Sequence activities - Estimate activity resources -Estimate Activity Durations - Develop Schedule - Control Schedule.

Unit IV

Project cost management: Estimate costs - Determine budget - Control costs. Project Quality Management: Plan quality - perform quality assurance - Perform quality control. Project Human Resource Management: Develop human resource plan - Acquire project team - Develop project team -Manage project team. Project Communications Management: Identify stakeholders Plan communications - Distribute information - Manage stakeholder expectations - report performance.

Unit V

15 hrs.

Project Risk Management: Plan risk management - Identify risks -Perform qualitative risk analysis -Perform quantitative risk analysis - plan risk responses - Monitor and control risks. Project Procurement Management: Plan - Conduct - Administer - Close procurements.

Text Book

- 1. "A guide to the Project management Body of Knowledge (PMBOK Guide)"Fouth Edition, Management Institute, Pennsylvania, 2008. Project
- BOB Huges, Mike Cotterell, Rajib Mall "Software Project 2. Management", McGraw Hill, Fifth Edition, 2011.

Chapters

Unit-I: Chapter 1.1 to 1.8, 2.1 to 2.4, 3.1 to 3.7 (Book-I) Unit-II: Chapter 3.1 to 3.11, 4.1 to 4.18 (Book- II) Unit-III: Chapter 4.1 to 4.6, 5.1 to 5.5, 6.1 to 6.6 (Book-I) Unit-IV: Chapter 7.1 to 7.3, 8.1 to 8.3, 9.1 to 9.4, 10.1 to 10.5(Book-I) Unit-V: Chapter 11.1 to 11.6, 12.1 to 12.4(Book-I)

References

- 1. Futrell, "Quality Software Project Management", Pearson Education India.
- 2. Royce, "Software Project Management", Pearson Education India.
- 3. C.Ravindranath Pandian, "Applied Software Risk Management-A Guide for Software Project Managers", Auerbach Publications, 2015.
- 4. Benjamin A. Lieberman, "The Art of Software Modeling", Auerbach Publications, 2010.

Web Resources

- 1. https://www.tutorialspoint.com/management concepts/project management softwares.htm (Project Management Software)
- 2. https://www.pmi.org/learning/library/risk-analysis-project-management-7070(Risk analysis and management)
- 3. https://www.mountaingoatsoftware.com/agile/scrum (Scrum)

Course Designer

Dr.P.Manickam

15 hrs.

15 hrs.

THIAGARAJAR COLLEGE, MADURAI – 9

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title		Category	L	Т	Р	Credit
PCS20PCE3	Security in Cor	Elective	5			5	
	L – Lecture	T – Tutorial	P - Pr	actica	1		
Year	Semester	Int. Marks	Ext. N	Aark	s]	Total
First	I/II	25	7	5			100

Preamble

To provide an in-depth knowledge related to security concepts in computing devices.

Prerequisite:

Students are expected to know and understand the basic concepts of security and attacks.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Explain the security attacks and program security	K1
CO2	Analyze security concepts in Operating Systems	K2,K3
CO3	Describe the Database Security	K4
CO4	Evaluate the Security in Networks	K2,K5
CO5	Analyze about Security plan and policies	K2,k3

K1-Knowledge K2-Understand K3-Apply K4-Analyze K5-Evaluate

Mapping Course Outcome with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	Μ	Μ	S	Μ	Μ
CO2	Μ	Μ	S	-	Μ	Μ	Μ
CO3	S	Μ	S	Μ	S	Μ	S
CO4	Μ	Μ	S	-	Μ	-	S
CO5	Μ	Μ	Μ	-	Μ	Μ	М

Thiagarajar College, Madurai. - 39th ACM - Dept. of Comp. Sci. - Syllabus 2020

Mapping Course Outcome with Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Μ	S	Μ	S
CO2	Μ	-	Μ	-	-
CO3	-	S	S	-	Μ
CO4	S	-	-	-	-
CO5	-	M	-	M	М

Bloom's Taxonomy

Blooms taxonomy						
	CA					
	First	Second	End of Semester			
Knowledge -K1	15% (9)	15% (9)	20% (30)			
Understand -K2	15% (9)	15% (9)	20% (30)			
Apply-K3	30% (18)	30% (18)	20% (30)			
Analyze-K4	20% (12)	20% (12)	20% (30)			
Evaluate-K5	20% (12)	20% (12)	20% (30)			
Total Marks	60	60	150			

Content

Unit I

Security Problem in Computing: What Does "Secure" Mean- Attacks-The Meaning of Computer Security-Computer Criminals-Methods of Defense-What's Next-Program Security: Secure Programs-Nonmalicious Program Errors-Viruses and Other Malicious Code-Targeted Malicious Code-Controls against Program Threats

Unit II

Protection in General Purpose Operating Systems: Protected Objects and Methods of Protection-Memory and Address Protection- Control of Access to General Objects- File Protection Mechanisms-User Authentication-Designing Trusted Operating Systems: What is a Trusted System-Security Policies- Models of Security-Trusted Operating System Design-Assurance in Trusted Operating Systems-Implementation Examples

Unit III

Database Security: Introduction to Databases-Concepts of Database-Components of Database-Advantages of using database-Security Requirements-Reliability and Integrity- Sensitive Data-Inference- Multilevel Databases- Proposals for Multilevel Security

Unit IV

Security in Networks: Network Concepts-Threats in Networks-Network Security Controls-Firewalls-Intrusion Detection Systems: Types of IDS-Goals for IDS-IDS strengths and limitations-Secure E-Mail: Security for E-Mail-Designs-Example secure E-Mail systems

. . .

15 hrs.

15 hrs.

15 hrs.

15 hrs.

Unit V

Administering Security: Security Planning -Risk Analysis: The nature of Risk-Steps of a Risk Analysis-Arguments for and against Risk Analysis-Organizational Security Policies-Physical Security: Natural disasters-Power loss-Human vandals-Interception of sensitive information-Contingency planning.

Text Book

1. Charles P. Pfleeger. Shari Lawrence Pfleeger, "Security in computing", Third Edition, Pearson education, 2004.

Chapters

Unit-I	: Chapter 1.1 to 1.6, 3.1 to 3.5
Unit-II	: Chapter 4.1 to 4.5, 5.1 to 5.6
Unit-III	: Chapter 6.1 to 6.7
Unit-IV	: Chapter 7.1 to 7.6
Unit-V	: Chapter 8.1 to 8.4

References

- 1. Alfred J.Menezes, Paul C.VanOorschot and Scott A.Vanstone ," Handbook of Applied Cryptography", CRC Press.
- 2. William Stallings, "Cryptography and Network Security Principles and Practices", Fourth Edition, Pearson publications, 2009.
- 3. Douglas Robert Stinson, Maura Paterson, "Cryptography: Theory and Practice", CRC Press, 2018.

Web Resources

- 1. www.cs.uccs.edu/~cs591/chapter8.ppt (Network Security)
- 2. http://wiki.cas.mcmaster.ca/index.php/Operating_Systems_Security (**Operating Systems** Security)
- 3. https://www.gasystems.com.au/database-security-important (Database security)

Course Designer

Dr.P.Manickam

THIAGARAJAR COLLEGE, MADURAI – 9

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title		Category	L	Т	Р	Credit
PCS20CE4	Digital Image F	Elective	5			5	
	L – Lecture	T – Tutorial	P – Pr	actica	ıl		
Year	Semester	Int. Marks	Ext. N	Mark	S]	Fotal
First	I/II	25	7	5			100

Preamble

To provide complete knowledge on Digital Image Processing methods, such as image processing methods in Spatial domain and Frequency domain, Edge detection, Compression, Segmentation, and Morphological concepts, which enable the students to understand the concepts and implement them empirically.

Prerequisite:

Review the fundamental concepts of a digital image processing system and Analyze images in the frequency domain using various transforms. Evaluate the techniques for image enhancement and image restoration. Categorize various compression techniques. Interpret Image compression standards, and Interpret image segmentation and representation techniques. Gain idea to process various image used in various fields such as weather forecasting, Diagnosis of various disease using image such as tumor, cancer etc.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Construct the Image Processing and various models	K1, K2
CO2	Describe the enhancement in spatial domain and Frequency Domain	K2,K3
CO3	Construct a Edge detection	K4
CO4	Demonstrate the Various image Compression Techniques	K3,K4
CO5	Analyze Image Segmentation & Morphological Image Processing	K3,K4

K1-Knowledge K2-Understand K3-Apply K4-Analyze K5-Evaluate

Mapping Course Outcome with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Μ	S	Μ	Μ	S	-	-
CO2	Μ	Μ	-	-	Μ	Μ	S
CO3	S	Μ	S	Μ	S	Μ	Μ
CO4	Μ	Μ	S	-	Μ	-	-
CO5	Μ	Μ	Μ	-	Μ	-	Μ

Mapping Course Outcome with Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	-	-	-	-
CO2	Μ	-	-	S	-
CO3	-	-	Μ	-	S
CO4	-	-	Μ	-	S
CO5	-	S	-	-	S

Bloom's Taxonomy

Blooms taxonomy						
	CA					
	First	Second	End of Semester			
Knowledge -K1	15% (9)	15% (9)	20% (30)			
Understand -K2	15% (9)	15% (9)	20% (30)			
Apply-K3	30% (18)	30% (18)	20% (30)			
Analyze-K4	20% (12)	20% (12)	20% (30)			
Evaluate-K5	20% (12)	20% (12)	20% (30)			
Total Marks	60	60	150			

Content

Unit I

Fundamentals: Image Sensing and Acquisition, Image Sampling and Quantization, relationship between Pixels; Random noise; Gaussian Markov Random Field, σ -field, Linear and Non-linear Operations; Image processing models: Causal, Semi-causal, Non-causal models. **Color Models:** Color Fundamentals, Color Models, Pseudo-color Image Processing, Full Color Image Processing, Color Transformation, Noise in Color Images.

Unit II

Spatial Domain: Enhancement in spatial domain: Point processing; Mask processing; Smoothing Spatial Filters; Sharpening Spatial Filters; Combining Spatial Enhancement Methods. **Frequency Domain:** Image transforms: FFT, DCT, Karhunen-Loeve transform, Hotlling's T² transform, Wavelet transforms and their properties. Image filtering in frequency domain.

Unit III

Edge Detection: Types of edges; threshold; zero-crossing; Gradient operators: Roberts, Prewitt, and so be 1 operators; residual analysis based technique; Canny edge detection. Edge features and their applications.

15 hrs.

15 hrs.

15 hrs.

Unit IV

Image Compression: Fundamentals, Image Compression Models, Elements of Information Theory. Error Free Compression: Huff-man coding; Arithmetic coding; Wavelet transform based coding; Lossy Compression: FFT; DCT; KLT; DPCM; MRFM based compression; Wavelet transform based; Image Compression standards.

Unit V

15 hrs.

15 hrs.

Image Segmentation: Detection and Discontinuities: Edge Linking and Boundary Deduction; Threshold; Region-Based Segmentation. Segmentation by Morphological water sheds. The use of motion in segmentation, Image Segmentation based on Color. **Morphological Image Processing:** Erosion and Dilation, Opening and Closing, Hit-Or-Miss Transformation, Basic Morphological Algorithms, Gray-Scale Morphology.

Text Book

1. Rafael Gonzalez, Richard E.Woods, "Digital Image Processing", Fourth Edition, PHI/Pearson Education, 2013.

Chapters

Unit-I	-	Chapters-2,6
Unit-II	-	Chapters-3, 4
Unit-III	-	Chapters-5
Unit-IV	-	Chapters-8
Unit-V	-	Chapters-9,10

References

- 1. A.K.Jain, Fundamentals of Image Processing, Second Ed., PHI, New Delhi, 2015.
- B.Chanla, D.Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2003. Nick Elford, "Digital Image Processing a practical introducing using Java", Pearson Education, 2004.
- 3. ToddR.Reed, "Digital Image Sequence Processing, Compression, and Analysis", CRC Press, 2015.
- 4. L.Prasad, S.S.Iyengar, "Wavelet Analysis with Applications to Image Processing", CRC Press, 2015.

Web Resources

- 1. <u>https://digitalimagingpic.blogspot.com/2019/08/digital-image-processing-gonzalez-4th.html</u> (*Digital Image Processing*)
- 2. <u>https://www.pearson.com/us/higher-education/product/Gonzalez-Instructor-Solutions-Manual-for-Digital-Image-Processing-4th-Edition/9780133356748.html</u>(*Digital Image Processing Material*)

Course Designer

Mr.M.Muthalagu

Thiagarajar College, Madurai. - 39th ACM - Dept. of Comp. Sci. - Syllabus 2020

THIAGARAJAR COLLEGE, MADURAI – 9

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title		Category	L	Т	Р	Credit
PCS20CE5	Cloud Com	Elective	5			5	
L – Lecture T – Tutorial		T – Tutorial	P - Pr	actica	ıl		
Year	Semester	Int. Marks	Ext. Marks]	Fotal	
First	I/II	25	7	5			100

Preamble

Provides Comprehensive and in-depth knowledge of Cloud computing concepts, technologies, architecture and application by introducing and researching state-of-the-art in cloud computing fundamental issues, applications and implementations. Also exposes frontier areas and information systems while providing sufficient foundations to enable further study and research

Prerequisite:

Basic knowledge about database and networks

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Explain the characteristics, Challenges, Computing Platforms, Models,	K1,K2
	Concepts and Technologies	
CO2	Describe about Virtualization, Cloud Services and Platforms	K1,K3
CO3	Analyze the Cloud Application Design and Development	K3,K4
CO4	Analyze about Python for Cloud	K4,K5
CO5	Describe the Big data analytics, Multimedia Cloud & Cloud Security	K2,K4

K1-Knowledge K2-Understand K3-Apply K4-Analyze K5-Evaluate

Mapping Course Outcome with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	-	Μ	S	-	Μ
CO2	Μ	Μ	S	-	Μ	Μ	-
CO3	S	Μ	S	Μ	S	Μ	Μ
CO4	S	Μ	S	-	Μ	Μ	S
CO5	S	Μ	Μ	-	Μ	-	Μ

Mapping Course Outcome with Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	-	-	М	-
CO2	Μ	S	-	Μ	Μ
CO3	S	Μ	L	-	-
CO4	S	Μ	L	-	-
CO5	-	-	-	М	S

Bloom's Taxonomy

Blooms taxonomy	y		
	CA		
	First	Second	End of Semester
Knowledge -K1	15% (9)	15% (9)	20% (30)
Understand -K2	15% (9)	15% (9)	20% (30)
Apply-K3	30% (18)	30% (18)	20% (30)
Analyze-K4	20% (12)	20% (12)	20% (30)
Evaluate-K5	20% (12)	20% (12)	20% (30)
Total Marks	60	60	150

Content

Unit I

COMPUTING BASICS

Introduction to Cloud computing definition- Characteristics of Cloud Computing- Cloud Models- Cloud Service Examples- Cloud based Services and Applications-Cloud concepts and Technologies.

Unit II

CLOUD SERVICES AND PLATFORMS

Compute Services - Storage Services - Cloud Database Services - Application Services - Content Delivery Services - Analytics Services - Deployment And Management Service - Identity And Access Management Services - Open Source Private Cloud Software.

Unit III

Unit IV

CLOUD APPLICATION DESIGN AND DEVELOPMENT

Design consideration- Reference Architecture for Cloud Application - Cloud Application Design Methodologies - Data Storage Approaches- Development in Python: Design Approaches – Application: Image Processing - Document Storage - Map Reduce - Social Media Analytics.

PYTHON FOR CLOUD Introduction- Installing Python- Data types & Data Structures- Control Flow- Functions-Modules- Packages- File Handling- Date/Time Operations – Classes- Python for Cloud: Amazon Web Services –Google Cloud Platform - Windows Azure –Map Reduced – Packages of Interest – Designing a RESTful Web API.

15 hrs.

15 hrs.

15 hrs.

15 hrs.

Unit V

15 hrs.

BIG DATA ANALYTICS, MULTIMEDIA CLOUD & CLOUD SECURITY

Big Data Analytics: Clustering Big data - Classification of Big Data – Recommendation systems. Multimedia Cloud: Case Study: Live Video Stream App - Streaming Protocols – Case Study: Video Transcoding App-Cloud Security: CSA Cloud Security Architecture – Authentication - Authorization - Identity and Access management - Data Security - Key Management- Auditing- Cloud for Industry, Healthcare &Education.

Text Book

1. ArshdeepBahga, Vijay Madisetti, "Cloud Computing: A Hands – On Approach" Universities press (India) Pvt. limited 2016.

Chapters:

Unit I : Chapter 1.1-1.5,2.1-2.12

Unit II : Chapter 3.1,3.2,3.3,3.4,3.5 to 3.9

Unit III: Chapter 5.2 to 5.5, 8.1 to 8.5

Unit IV: Chapter 6.1 to 6.10, 7.1 to 7.5,7.7

Unit V: Chapter 9.1 to 9.4, 10.1 to 10.4, 12.2 to 12.8, 13

References

- 1. Rittinghouse and Ransome, Cloud Computing: Implementation, Management, and Security, CRC Press, 2016.
- 2. Michael Miller "Cloud Computing Web based application that change the way you work and collaborate online". Pearson edition, 2008.
- 3. Kris Jamsa, Cloud Computing: SaaS, PaaS, IaaS, Virtualization, Business Models, Mobile, Security and More, Jones & Bartlett Learning, 2012.

Web Resources

- 1. <u>https://www.ripublication.com/aeee_spl/aeeev4n1spl_15.pdf</u> (Cloud Computing Services and its Applications)
- 2. <u>https://cloud.google.com/products/databases</u> (Google Cloud based Databases)
- 3. <u>https://www.ibm.com/blogs/cloud-computing/2013/10/15/social-media-analytics-as-saas-whats-in-it-for-a-social-data-analyst/#:~:text=Social%20media%20analytics%20offered%20as,cost%2Deffective%20and%20secure%20w ay (Social Media Analytics as SaaS)</u>

4. <u>https://www.ibm.com/blogs/cloud-computing/2013/10/15/social-media-analytics-as-saas-whats-in-it-for-a-social-data-analyst/#:~:text=Social%20media%20analytics%20offered%20as,cost%2Deffective%20and%20secure%20w ay (Social Media Analytics - II)</u>

Course Designer

Mrs.T.S. Urmila

THIAGARAJAR COLLEGE, MADURAI – 9

(Re-Accredited with "A" Grade by NAAC)

DEPARTMENT OF COMPUTER SCIENCE

(For those joined M.Sc. Computer Science on or after June 2020)

Programme Code - PCS

Course code	Course Title		Category	L	T	Р	Credit
PCS20CE6	Data Mini	Elective	5	-	-	5	
	L – Lecture	T – Tutorial	P – Pr	actica	al		
Year	Semester	Int. Marks	Ext. Marks		r	Fotal	
First	I/II	25	7	'5			100

Preamble

Introducing the fundamental concepts of Data Mining Techniques and various Algorithms used for Information Retrieval from Datasets. Familiarize with basic data mining concepts for solving real world problems.

Prerequisite:

Basic knowledge of Querying Databases with Data Manipulations from the Databases.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Explain the Major Issues, Data Preprocessing	K1,K2
CO2	Analyze the Implementation of Data Ware House Concepts	K1,K3
CO3	Analyzing various Classification Algorithms	K3,K4
CO4	Describe the various Clustering Algorithms	K3,K4
CO5	Evaluate the Applications of Data Mining in Spatial, Multimedia, Text	K4,K5
	and Web	

K1-Knowledge

K2-Understand

K3-Apply K4-Analyze K5-Evaluate

Mapping Course Outcome with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	Μ	Μ	Μ	-	-	-
CO2	Μ	Μ	S	-	Μ	Μ	S
CO3	S	М	Μ	-	S	Μ	-
CO4	Μ	М	S	-	Μ	-	S
CO5	S	Μ	S	-	Μ	Μ	Μ

Mapping Course Outcome with Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	-	-	Μ	-
CO2	Μ	S	-	Μ	Μ
CO3	S	Μ	L	-	-
CO4	S	Μ	L	-	-
CO5	-	-	-	Μ	S

Bloom's Taxonomy

Blooms taxonomy	y .		
	CA		
	First	Second	End of Semester
Knowledge -K1	15% (9)	15% (9)	20% (30)
Understand -K2	15% (9)	15% (9)	20% (30)
Apply-K3	30% (18)	30% (18)	20% (30)
Analyze-K4	20% (12)	20% (12)	20% (30)
Evaluate-K5	20% (12)	20% (12)	20% (30)
Total Marks	60	60	150

Content

Unit I

Data Mining And Data Preprocessing: Data Mining – Motivation – Definition – Data Mining on Kind of Data –Functionalities – Classification – Data Mining Task Primitives – Major Issues in Data Mining – Data Preprocessing – Definition – Data Clearing – Integration and Transformation – Data Reduction. 15 hrs.

Unit II

Data Warehousing: Multidimensional Data Model –Data Warehouse Architecture – Data Warehouse Implementation -From data Warehousing to Data Mining - On Line Analytical Processing - On Line Analytical Mining.

Unit III

Frequent Patterns, Associations And Classification: The Apriori Algorithm – Definition of Classification and Prediction - Classification by Decision Tree Induction - Bayesian Classification -Rule Based Classification – Classification by Back Propagation – Lazy Learners – K-Nearest Neighbor - Other Classification Methods.

Unit IV

Cluster Analysis: Definition – Types of data in Cluster Analysis – Categorization of major Clustering Techniques - Partitioning Methods- Hierarchical Clustering - BIRCH - ROCK -Grid Based Methods - Model Based Clustering Methods - Outlier Analysis.

Unit V

Spatial, Multimedia, Text And Web Data: Spatial Data Mining – Multimedia Data Mining – Text Mining – Mining the World Wide Web – Data Mining Applications – Trends in Data Mining.

15 hrs.

15 hrs.

15 hrs.

15 hrs.

K - 90 -

Text Book

1. Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems) 3rd Edition, July 6, 2011.

Chapters:

Unit I : Chapter 1.1 to 1.7,3.1 to 3.4 Unit II : Chapter 2 Unit III: Chapter 6.2, 7.1 to 7.6 Unit IV: Chapter 8 Unit V: Chapter 9.2,9.3,9.5,9.6,10.1,10.5

References

- 1. Margret H. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education, 2003.
- 2. M. Awad, Latifur Khan, Bhavani Thuraisingham, Lei Wang, "Design and Implementation of Data Mining Tools", CRC Press- Taylor & Francis Group, 2015.
- 3. Pang-Ning Tan, Michael Steinbach, Vipin Kumar, "Introduction to Data Mining-Instructor's Solution Manual", Pearson Education, First Edition, 2016.
- 4. Mohammed J.Zaki, Wagner Meira JR, "Data Mining and Analysis: Fundamental Concepts and Algorithms", Cambridge India, 2016.

Web Resources

- 1. <u>https://www.guru99.com/online-analytical-processing.html#:~:text= Online %20</u> <u>Analytical%20Processing%20(OLAP)%20is,group%2C%20aggregate%20and%20join%20data</u>. (Cube,Operations and Types in Data Warehouse)
- 2. <u>http://staffwww.itn.liu.se/~aidvi/courses/06/dm/lectures/lec7.pdf</u> (Apriori Algorithm)
- 3. <u>https://www.slideshare.net/archnaswaminathan/cdm-44314029#:~: text=</u> <u>Partitioning%20Method%20%E2%80%A2%20Suppose%20we,belong%20to%20exactly%20one%20group.</u> (Clustering in Data Mining)
- 4. <u>https://www.springer.com/gp/book/9780792373490</u> (Mining World Wide Web)

Course Designer

Mrs.T.S. Urmila

B.Sc. Computer Science in Cognitive Systems Programme Code - UCG

Programme outcome-PO (Aligned with Graduate Attributes) - Bachelor of Science(B.Sc.,)

Scientific Knowledge and Critical Thinking

Apply the knowledge of Life Science, Physical and Chemical Science, Mathematics, statistics, Computer science and humanities for the attainment of solutions to the problems that come across in our day-to-daylife/activities.

Problem Solving

Identify and analyze the problem and formulate solutions for problems using the principles of mathematics, natural sciences with appropriate consideration for the public health, safety and environmental considerations.,

Communication and Computer Literacy

Communicate the fundamental and advanced concepts of their discipline in written and oral form. Ableto make appropriate and effective use of information and information technology relevant to their discipline

Life-Long Learning

Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Ethical, Social and Professional Understanding

Commitment to principles, codes of conduct and social responsibility in order to behave consistently with personal respect. Acquire the responsibility to contribute for the personal development and for the development of the community. Respect the ethical values, social responsibilities and diversity.

Innovative, Leadership and Entrepreneur Skill Development

Function as an individual, and as a member or leader in diverse teams and in multidisciplinary settings. Become an entrepreneur by acquiring technical, communicative, problem solving, intellectual skills.

THIAGARAJAR COLLEGE, MADURAI – 9.

(Re-Accredited with "A Grade by NAAC)

DEPARTMENT OFCOMPUTER SCIENCE

Vision:

• To be frontier in educating Computer Science and to produce globally competent graduates with moral values committed to build a vibrant nation.

Mission:

- To strengthen the core competence in Computer Science through analytical learning.
- To produce successful graduates with personal and professional responsibilities and commitment to lifelong learning.
- To uplift innovative research in computer science to serve the needs of industry, government and society.

Programme Educational Objective (PEO):

Graduates will be able to

PEO1	Be employed successfully or pursue their higher education.
PEO2	Apply knowledge of computational linguistics, learning and reasoning skills that are
	relevant and appropriate to the domain.
PEO3	Use and develop skills as required in the field of IT and Infrastructure services.
PEO4	Remain abreast in their profession and be leaders in our technologically vibrant
	society.
PEO5	Lead a successful technical or professional career including supportive and leadership
	roles on multidisciplinary teams.

Programme Specific Outcome (PSO):-B.Sc., Computer Science with Cognitive Systems

On the successful completion of B.Sc., Computer Science with Cognitive Systems the students will

PSO1	Gain knowledge in not only the core topics of computer science but also develop an
	equal appreciation of current industry standards.
PSO2	Understand real time IT infrastructure domains blended with practical lab experience in
	the area of Computer Network, Operating systems, Programming and Software Testing.
PSO3	Be exposed to industry ready syllabus such as Infrastructure management, DevOps,
	Virtualization and Cloud Computing.
PSO4	Learn to comprehend and integrate their research practice in computational languages, Machine
	learning and Artificial Intelligence.
PSO5	Create awareness on the current issues, latest trends in technological development and
	thereby innovate new ideas and solutions to existing problems in society.

THIAGARAJAR COLLEGE (AUTONOMOUS) :: MADURAI - 09

DEPARTMENT OF COMPUTER SCIENCE

B.Sc. Computer Science with Cognitive Systems

(For those who join in 2020 and after)

I SEMESTER									
Course	Code No.	Title of the paper	Hrs/	Crd.	Total	Marks			
			WK		1115	CIA	SE	TOT	
Part 1	U20P111	இக்காலத் தமிழும் இடைக்காலத் தமிழும்	5	3	75	25	75	100	
Part 2	U20EN11CT	English I – Communication Skills	3	3	45	25	75	100	
EVS	U20ES11	Environmental Science	2	2	30	15	35	50	
Core 1	UCG20C11	Operating System	5	4	75	25	75	100	
Allied-I	UMA20GE11I	Mathematical Foundation for Computer Science	5	5	75	25	75	100	
Core Lab1	UCG20CL11	Practical-Operating System Lab	5	2	75	40	60	100	
Core Lab	UCG20CL12	Practical Programming Lab -Introduction to Work Sheets	5	2	75	15	35	50	
Total			30	21				600	

II SEMESTER									
Course	Code No.	Title of the paper	Hrs/	Crd.	Total	Marks		S	
			WK		1115	CIA	SE	TOT	
Part 1	U20P121	சமயத் தமிழும் செவ்வியல் தமிழும்	5	3	75	25	75	100	
Part 2	U20EN21CT	English II –							
		Campus to Corporate	3	3	45	25	75	100	
VE	U20VE21	Value Education	1	1	15	15	35	50	
Core 2	UCG20C21	Python Programming	4	4	60	25	75	100	
Core 3	UCG20C22	Data structures	4	4	60	25	75	100	
Allied -II	UMA20GE21I	Probability and Statistics	5	5	75	25	75	100	
Core Lab2	UCG20CL22	Practical- Data Structures							
		Lab	4	2	60	40	60	100	
Core Lab3	UCG20CL21	Practical-Python	Practical- Python						
		Programming Lab	4	2	60	40	60	100	
Total			30	24				750	

III SEMESTER									
Course	Code No.	Title of the paper	Hrs/	Crd	Tota l		Mark	s	
			WK	•	Hrs	CIA	SE	TOT	
Core 4	UCG20C	Database Management							
	31	System	4	4	60	25	75	100	
Core 5	UCG20C	Java Programming							
	32		4	4	60	25	75	100	
Core 6	UCG20C	Computer Networks	4	4	60	25	75	100	
	33		4	4	00	23	15	100	
Allied III	UMA20	Physics for Computer	5	5	75	25	75	100	
	GE31I	Science							
NME I	UCG20N	E-Commerce							
	E31		2	2	30	15	35	50	
Core Lab 4	UCG20C	Practical- Computer							
	L33	Networks Lab	4	2	60	40	60	100	
Core Lab 5	UCG20C	Practical- Java Programming	4	2	60	40	60	100	
	L32	Lab	4	2	00	40	00	100	
Core Lab 6	UCG20C	Practical- Database							
	L31	Management Lab	3	2	45	40	60	100	
Total			30	25				750	

	IV SEMESTER									
Course	Code No.	Title of the paper	Title of the paper Hrs/ wk Cr		Total		Mark	S		
			WK		Hrs	CIA	SE	ТОТ		
Core 7	UCG20C41	Virtualization and Cloud	5	4	75	25	75	100		
Core 8	UCG20C43	Process Management	5	4	75	25	75	100		
Core 9	UCG20C42	Infrastructure Management	5	4	75	25	75	100		
Allied IV	UMA20GE41I	Mathematical Aptitude for								
		competitive examinations	5	5	75	25	75	100		
NME II	UCG20NE41	Internet Applications	2	2	30	15	35	50		
Core Lab7	UCG20CL41	Practical- Virtualization								
		and Cloud Lab	4	2	60	40	60	100		
Core Lab8	UCG20CL42	Practical- Infrastructure								
		Management Lab	4	2	60	40	60	100		
Total			30	23				650		

V SEMESTER								
Course	Code No.	Title of the paper	Hrs/	Crd.	Total		Marks	
			WK		nrs	CIA	SE	TOT
Core 10	UCG20C51	Software Engineering						
		and Testing	5	5	75	25	75	100
Core Elective 1	UCG20CE51	Core Elective- I	5	5	75	25	75	100
Core 11	UCG20C52	Digital Technology	5	5	75	25	75	100
Core Elective	UCG20CL53	Options given						
Lab1			4	2	60	15	35	50
Core Lab11	UCG20CL51	Practical - Software						
		Testing Lab	4	2	60	40	60	100
Core Lab12	UCG20CL52	Practical - Digital						
		Technology Lab	3	2	45	40	60	100
SEC I	UCG20SE51	Practical- DevOps Tools						
		Lab	4	2	60	40	60	100
Total			30	23				650

VI SEMESTER									
Course	Code No	Title of the paper	Hrs	Crd	Total		Mar	ks	
Course	Coue No.	The of the paper	wk	•	Hrs	CI A	SE	тот	
Core 12	UCG20C61	R- Programming	4	4	60	25	75	100	
Core 13	UCG20C62	*ITIL and Client Relationship Management	4	4	60	25	75	100	
Core Elective 2	UCG20CE61	Core Elective- II	5	5	75	25	75	100	
Core 14	UCG20C63	IT Cognition and Problem Solving	5	4	75	25	75	100	
Core lab 13	UCG20CL61	Practical- R Programming Lab	4	2	60	40	60	100	
Core Lab14	UCG20CL62	Practical- ITIL and Client Relationship Management							
		Lab	4	2	60	40	60	100	
SEC II	UCG20SE61	Practical - WEB							
		Technology Lab	4	2	60	15	35	50	
Part V				1					
Total			30	24				650	

List of Electives

Core Elective - I

- Graphics and Visualizations
- Mobile App Development
- Cryptography and network security
- Multimedia and its Applications

Core Elective – II

- Data Mining
- Big Data Analytics

Core Elective Lab - I

- Practical Graphics and Visualizations Lab
- Practical Mobile App Development Lab
- Practical Cryptography and network security Lab

Practical - Multimedia and its Applications Lab

Consolidation of contact hours and Credits: UG

Semester	Contact Hrs/Week	Credits
Ι	30 Hrs	21
II	30 Hrs	24
III	30 Hrs	25
IV	30 Hrs	23
V	30 Hrs	23
VI	30 Hrs	24
Total	180	140

THIAGARAJAR COLLEGE (AUTONOMOUS) :: MADURAI – 09 DEPARTMENT OF COMPUTER SCIENCE

B.Sc. Computer Science with Cognitive Systems (For those who join in 2020 and after)

Course Code	Course Title	Category	L	Т	Р	Credit
U20EN1 1CT	English I – Communication Skills		3	-	-	3

Year	Semester	Int. Marks	Ext.Marks	Total
Ι	Ι	25	75	100

Course Outcome

#	Course outcome	Knowledge Level
C01	Empower their listening and speaking skills	K1
CO2	Enrich their vocabulary	К2
CO3	Mould their employability skills	K1

K1: Knowledge

K2: Understand

K3: Apply

Content

Unit-I Listening skills

Listening Effectively - Barriers to communication - Listening to GRE, TOEFL, IELTS videos

Unit-II Speaking Skills

Essentials of Spoken English - Situational Conversations - Evaluation- Spoken Practice

Unit-III Word Power

Choice of Words – Vocabulary

Unit-IV Comprehension & Composition

Comprehension writing from unknown passages - Report Writing - Email Writing

Unit-V Communication for Carrier Advancement

Speaking effectively – The Quick & Easy way - The challenges of Effective Speaking Placing mind over matter: Interviews - Shoring up in Group Discussion.

Text Book

- 1. Communicate or Collapse –A Handbook of Effective Public Speaking, Group Discussion & Interviews. P.Lata and Sanjay Kumar .PHI Learning Pvt ltd.,New Delhi:2007.print
- **2.** English for Success .G.Radhakrishna Pillai.,Emerald publishers.Chennai: 2010.Print A Practical Course in Spoken English.J.K.Gangal.,PHI Learning Pvt.ltd. NewDelhi:2012

Course Designer

Ms.P.Eswari

THIAGARAJAR COLLEGE (AUTONOMOUS) :: MADURAI – 09 DEPARTMENT OF COMPUTER SCIENCE

B.Sc. Computer Science with Cognitive Systems (For those who join in 2020 and after)

Course Code	Course Title	Category	L	Т	Р	Credit
U20E S11	Environmental Science	AECC1	2	-	-	2

Year	Semester	Int. Marks	Ext.Marks	Total
Ι	Ι	15	35	50

Students acquire knowledge on the basic concepts, components and importance of environment.

Preamble

On the completion of the course the student will be able to

Course Outcome					
Course outcome	Course outcome				
			Level		
CO1 Define the structure and fur	ctions of ecosystem		K1		
CO2 Explain the benefits of biodiversity conservation					
CO3 Summarise the sources, effe	is types of	K1			
Pollutants					
CO4 Perceive the environment le	gislations in India for sustainable of	development.	K3		
CO5 Elaborate the impact of env	ironmental problems on life system	ns	K3		
K1: Knowledge	K2: Understand	K3: Apply			

Mapping of Course Outcomes with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Μ	L	Μ
CO2		Μ	Μ		Μ
CO3		L	Μ	L	L
CO4			L	L	L
CO5	S	-	L	Μ	Μ
S-STR	RONG	M- M	EDIUM	L-L	OW

Mapping of Course Outcomes with Programme Outcomes

	PO1	PO2	PO 3	PO4	PO5	PO6
CO1	S	S	L	S	S	-
CO2	S	M	L	Μ	L	L
CO3	S	S	L	S	Μ	L
CO4	S	S	L	Μ	S	S
CO5	S	Μ	-	S	S	S
S-ST	RONG	M-MEDIU	JM L-	LOW		

Blooms taxonomy: Assessment Pattern

	(CA	End of
	First	Second	Semester
Knowledge	40%	40%	40%
Understand	40%	40%	40%
Apply	20%	20%	20%

Course Title: Environmental Studies

Unit I

Definition and Scope of Environmental Studies – Ecology and Ecosystem – Structure of an Ecosystem – Food chains, food webs and ecological pyramids – Causes of Biodiversity Loss – Benefit and Conservation of Biodiversity

Unit II

Environmental problems and Management: Causes, effects and Control measures of : Air PSOllution – Water Pollution – Noise pollution – Nuclear Hazards. Solid waste management and Waste Disposal methods. Climate change and Global Warming causes and Measures. Waste and Plastics. Urban environmental problems and measures. Environmental Legislations in India. Sustainable development and Inclusive growth.

Text Book

1. Kanagasabai, C.S. 2005. Environmental Studies. Rasee publishers. Madurai.

Reference Books

1. Yogendra, N. and Srivastava, N. 1998. Environmental PSOllution, Ashish Publishing House. New Delhi.

2. Sapru R.K.2001. Environment Management in India, Vol. I & Vol. II Ashish publishers house, New Delhi.

THIAGARAJAR COLLEGE (AUTONOMOUS) :: MADURAI – 09 DEPARTMENT OF COMPUTER SCIENCE

B.Sc. Computer Science with Cognitive Systems

(For those who join in 2020 and after)

Programme Code - UCG

Course code	Course Title	Category		L	Т	Р	Credit
UCG20C11	Operating System	Core 1		5	-	-	4
	L – Lecture	T – Tutorial	P – P	ractic	cal		
Year	Semest	er	Internal	Ext	ternal		Total
Ι	Ι		25		75		100

Preamble

The course facilitates the students to familiarize the basic concepts of operating systems and its functions, services and management policies with processes, deadlock, and memory, file and windows XP concepts.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Learn the need of operating system, its components and evolution.	K1, K2
CO2	Understand the concept of process, operations and scheduling.	K1
CO3	Acquire the knowledge of process synchronization and deadlock concept.	K2, K3
CO4	Enrich their knowledge in memory management concept and management techniques.	K1
CO5	Learn Files systems and Windows XP Concepts.	K2,K3
	K1-Knowledge K2-Understand K3	-Annly

KI-Knowledge

K2-Understand

X3-Apply

Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	S	Μ	S	S
CO2	Μ	S	Μ	S	S
CO3	Μ	S	Μ	Μ	S
CO4	Μ	S	L	Μ	S
CO5	Μ	Μ	L	S	S

S-STRONG

M-MEDIUM

L-LOW

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	Μ	S	S	S	Μ
CO2	Μ	S	S	S	S	S
CO3	Μ	Μ	S	S	S	S
CO4	Μ	S	S	Μ	Μ	S
CO5	S	S	S	Μ	Μ	S
TRONG		•	M-M	EDIUM	[L-LOW

Blooms taxonomy

	(CA	End of
	First	Second	Semester
Knowledge(K1)	21	21	44
Understand(K2)	21	21	44
Apply(K3)	10	10	22
Total Marks	52	52	110

Content

Unit-I Introduction and Operating System Structure:

Introduction : OS Concepts- Batch Systems- Multi programmed Systems- Time sharing Systems-Desktop systems - Multiprocessor Systems - Distributed Systems. System Structure: System Components- System Calls.

Unit-II Process and CPU Scheduling:

Process: Process concept- Process Scheduling- Operations on Process- Co-operating Processes-Interprocess Communication

CPU Scheduling: Basic Concepts- Scheduling Criteria-Scheduling Algorithms.

Unit-III Process Synchronization and Deadlock:

Process Synchronization: Background- Critical Section Problem Deadlock: Deadlock characterization-Methods for handling Deadlocks-Deadlock Prevention-Deadlock Avoidance-Deadlock Detection and Recovery.

Unit-IV Memory Management and Virtual Memory:

Memory Management: Background-Swapping-Contiguous Memory Allocation-Paging-Segmentation.

Virtual Memory: Background- Demand Paging-Page Replacement- Allocation of Frames-Thrashing.

Unit-V File System and Windows XP:

File System: File Concepts-Access Methods-Allocation Methods- Free Space Management. Windows XP: History – Design Principles- System components – Environmental Subsystems- File system- Networking- Programmer interface.

Text Book

Silberschatz Galving Gange, 2008, Operating System Concepts, 6th edn, Wiley India (P) Ltd., New Delhi

Chapters (Relevant Topics only)

Unit-I	1.1 to 1.5,3.1,3.3
Unit-II	4.1 to 4.5,
Unit-III	7.1, 7.2, 8.2 to 8.7
Unit-IV	9.1 to 9.5, 10.1, 10.2, 10.4 to 10.6
Unit-V	1.1,11.2,12.4,12.5, 22.1 to 22.7.

15 Hours

15 Hours

15 Hours

15 Hours

15 Hours

Reference

- 1. William Stallings,2000, Operating Systems,2nd edn, PHI Prentice Hall,New Delhi
- 2. Achyut S Godbole, Operating systems, McGraw-Hill, 3rd edn

Web Resources

https://www.tutorialspoint.com/operating_system/operating_system_tutorial.pdf

* The above web link is designed to learn the fundamental and advanced concepts of Operating with real time examples.

https://lecturenotes.in/subject/56/operating-systems-os

• The above web link is used to understand the concepts of operating system with case studies.

Course designer:

Mr.J.Prakash
B.Sc. Computer Science with Cognitive Systems (For those who join in 2020 and after)

		III 2020 all	u altel j				
Course Code	Course Title		Category	L	Т	Р	Credit
UMA20GE11I	Mathematical Foundation for		Generic	5	-	-	5
	Computer Science		Elective				
	L - Lecture	Γ - Tutorial	F	P-Prac	tical		

Year	Semester	Int. Marks	Ext. Marks	Total
First	First	25	75	100

Preamble

This Course provides hands-on exploration of the relevancy of set theory, logic, basic principles of Boolean Algebra and Graph theory.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Relate set theoretical concepts and analyze simple algorithms	K1, K2, K3
CO2	Recall basic matrix operations and solve problems using matrix theory	K1, K3
CO3	Construct and classify logical sentence in terms of logical connectives	K2, K3
	and predicates	
CO4	Formulate and interpret Boolean logic principles	K2, K3
CO5	Find matrices related to graphs and apply graph theoretical ideas in	K1, K3
	problem solving	

Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	-	-	Μ	-
CO2	-	S	-	Μ	-
CO3	-	-	S	-	Μ
CO4	-	-	S	Μ	-
CO5	-	S	-	-	Μ

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	Μ	-	-	Μ	-
CO2	S	S	S	Μ	-	-
CO3	S	S	S	-	Μ	Μ
CO4	Μ	S	S	Μ	-	-
CO5	S	Μ	-	Μ	-	Μ

	(CA	End of
	First	Second	Semester
Knowledge(K1)	21	21	44
Understand(K2)	21	21	44
Apply(K3)	10	10	22
Total Marks	52	52	110

Contents

Unit I

Relations and Functions :Cartesian Product of Two sets – Relations – Representations of a Relation – Operations on Relations – Equivalence Relations – Closures and Warshall's Algorithm – Partitions and Equivalence Classes. Functions and operators – One – to – one, Onto functions – Special Types of Functions – Invertible Functions – Composition of Functions.(Proofs of the Theorems are not included – Problems only)

Unit II

Matrix Algebra : Introduction - Matrix operations – Inverse of a Square Matrix – Elementary operations and Rank of a Matrix – Simultaneous Linear Equations – Inverse by Partitioning - Eigen values and Eigen vectors.

Unit III

Logic :Introduction – TF-statements – Connectives – Atomic and compound statements – Well Formed (Statement) Formulae – Truth table of a Formula – Tautology – Tautological Implications and Equivalence of Formulae – Replacement Process – Functionally complete sets of connectives and Duality law – Normal Forms – Principal Normal Forms

Unit IV

Lattices and Boolean Algebra : Lattices – Some properties of Lattices – New Lattices – Modular and Distributive Lattices.

Unit V

Graph Theory : Basic concepts – Matrix Representation of Graphs

Note : Proof of the Theorems are not included

Text Book:

Venkataraman. M.K., Sridharan. N. and Chandrasekaran. N. 2009, Discrete Mathematics, The National Publishing Company, Chennai.

Unit	Chapter/Section
Ι	II(1-7) III(1-5)
II	VI(1-7)
III	IX(1 – 12)
IV	X(1-4)
V	XI(1 and 2)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

References:

- 1. Seymour Lipschutz and Marc Lars Lipson, 2002, Discrete Mathematics, Tata McGraw Hill Publishing Company Ltd. New Delhi.
- 2. Trembley. J.P. and Manohar. R. 2001, Discrete Mathematical Structures with Applications to Compute Science, Tata McGraw –Hill Publishing Company Ltd, New Delhi.

Course Designers:

- 1. Dr. R. Angeline Chella Rajathi
- 2. Mr. K.V. Janarthanan

B.Sc. Computer Science with Cognitive Systems

(For those who join in 2020 and after)

Programme Code - UCG

Programme Cod	le -	Course Title		Categ	ory	L	Т	Р	Credit
OCTCOURSE COUL	,								
UCG20CL11		Operating	System	Core I	Lab 1	-	-	5	2
		Lab							
	Ι	L – Lecture		T – Tut	orial		P - P	ractic	al
Year	S	Semester Inte		rnal	External			Total	
Ι		Ι		0	60			100	

Preamble

This course enables the students to learn and handle windows server administration tasks such as installation, group policies, storage management, DNS and DHCP concepts

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge
		Level
CO1	Learn Installation of Client, Server OS and create server and play roles	K1,K3
CO2	Know the concepts of Zone creation and DHCP File and print services	K2,K3
CO3	Apply File, print service and Devices, printers	K3
CO4	Learn Group policy and server storage management.	K2,K3
CO5	Implement ADS Scenario based concepts and DNS, DHCP	K3
	K1-Knowledge K2-Understand	K3-Apply

Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	Μ
CO2	S	S	S	S	Μ
CO3	S	S	S	S	Μ
CO4	S	S	S	S	Μ
CO5	S	S	S	S	Μ

S-STRONG

M-MEDIUM

L-LOW

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	Μ	Μ	S	S	Μ
CO2	Μ	S	S	S	Μ	Μ
CO3	Μ	Μ	S	S	S	Μ
CO4	Μ	S	S	L	S	S
CO5	S	S	Μ	Μ	S	S
STRONG			M-M	EDIUN	ſ	L-LOW

Content

- 1. Installation of client and server OS
- 2. Create server and play roles
- 3. Zone creation and DHCP
- 4. File and print services
- 5. Devices and printers
- 6. Group policy
- 7. Server storage management
- 8. Server scenario
- 9. ADS Scenario based
- 10. DNS and DHCP

Web Resources

https://ittutorials.net/microsoft/windows-server-2016/

• The above Web link has information about windows server 2016 consist of many new features in computing of server room concepts and it has many top features process in windows server 2016.

https://www.tutorialspoint.com/windows_server_2012/index.htm

• The above Web link has information about Windows server for the professionals to install and use operating system to perform various operations on windows based Microsoft server based managements.

Course Designer

Mr.J.Prakash

B.Sc. Computer Science with Cognitive Systems

(For those who join in 2020 and after) Programme Code - UCG

Course code	Course Title	Category	L	Τ	Р	Credit
UCG20CL12	Practical Programming Lab -Introduction to Work Sheets	Core Lab 2	-	-	5	2
I a a fina	T Tutomial	D Dreatical				

L – ecture T – Tutorial P – Practical

Year	Semester	Internal	External	Total
Ι	Ι	15	35	50

Preamble

This course helps the students to perform all sorts of tasks like budgeting, sales analysis, forecasting, charting, graphing and much more.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
		(according to
		Bloom's Taxonomy)
CO1	Develop applications using workbook and worksheet object	К3
CO2	Implement worksheets using control statements and range function.	К3
CO3	Develop interactive applications using Userform	К3
CO4	Implement applications using functions and sub procedures.	К3
CO5	Handle worksheets using mathematical and financial functions.	К3
	K1-Knowledge K2-Understand	K3-Apply

Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	S	Μ	Μ	S
CO2	Μ	S	S	S	S
CO3	Μ	S	S	Μ	S
CO4	S	S	Μ	Μ	S
CO5	S	S	Μ	Μ	S

S-STRONG

M-MEDIUM

L-LOW

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	Μ	Μ	S	S
CO2	Μ	S	S	S	Μ	Μ
CO3	S	Μ	Μ	S	S	Μ
CO4	Μ	Μ	S	S	S	М
CO5	S	S	Μ	Μ	S	М
S-STRONG		M-ME	DIUM	L-LO	W	

Content

- 1. Program to demonstrate Built in Dialog boxes.
- 2. Program to calculate total sales value of each employee over a period of three years in workbook and worksheet object.
- 3. Program to show print preview of all the possible cricket matches from a list of items using range function.
- 4. Program to compare randomly selected ranges and highlight cells that are unique using range function.
- 5. Program to calculate the tax on income

Income	Tax on this income
0 to Rs.2,00,000	Nil
Rs.2,00,000 to 4,00,000	10%
Rs,4,00,000 to 8,00,000	20%
Above Rs.8,00,000	30%

- 6. Program to create userform that converts any amount from one currency into another.
- 7. Program to demonstrate interactive userform.
- 8. Program to create a sub procedure to generate Fibonacci series up to 1000.
- 9. Program to demonstrate financial functions.
- 10. Program to demonstrate mathematical functions.

Web Resources

https://www.excel-easy.com/vba.html

• The above web link is used to know the basic concepts of VBA. The students will get to know to perform all sorts of data analytics.

https://www.automateexcel.com/learn-vba-tutorial/

• The above web link is used to understand the core concepts of worksheet object which will be used to do financial, mathematical and statistical calculations.

Course Designer:

Mr.J.Prakash

THIAGARAJAR COLLEGE (AUTONOMOUS) :: MADURAI – 09 DEPARTMENT OF COMPUTER SCIENCE **B.Sc. Computer Science with Cognitive Systems** (For those who join in 2020 and after)

Course Code	Course Title	Category	L	Т	Р	Credit
U20EN21CT	English II –		3	-	-	3
	Campus to Corporate					

Year	Semester	Int. Marks	Ext.Marks	Total
Ι	II	25	75	100

Course Outcomes

	Course outcomes	Knowledge Level
CO1	Empower their employable skills	K1
CO2	Incorporate their technical skills for placement	K2
CO3	Enrich their Personality Development	K1
	K1: Knowledge K2: Understa	nd K3. Annly

Content

Unit-I Introduction

Introduction to Corporate Communication - Transition from Campus to Corporate- Corporate Expectations Scenario.

Unit-II Personality Development

Personality Development-Definition, Need & Importance -Positive Mindset & Values- Work-Life Balance - Time & Stress Management

Unit-III Organisational Behaviour

Professional Skills - Communication Skills - Team Work – Managing Conflicts Power & Politics in Organization

Unit-IV Technology Skills

How to make a Presentation - Using Audio-Visual Aids - Evaluation- Presentation with an Aid

Unit-V Placement

Verbal Aptitude - Group Discussion - Drafting a CV- Interview

Text Book

- 1. Soft Skills .,Dr.K.Alex.S.Chand &Company Pvt.Ltd. NewDelhi:2009.Print Business Communication : Technical & Methods.,OM.P.Juneja &Aarati Mujumdar. Orient BlackSwan Pvt.ltd., Hyderabad:2010. Print.
- 2. Campus to Corporate: Your Roadmap to Employability.Gangadhar Joshi. Sage Publications Pvt Ltd.NewDelhi: 2016.Print

Course Designer

Ms.P.Eswari

B.Sc. Computer Science with Cognitive Systems (For those who join in 2020 and after)

Programme Code - UCG

Course C	ode	Cour	rse Title		Category	L	Т	Р	Credit
UCG20C	21	Python Pro	Python Programming		Core 2			4 1	-
L -	- Lec	cture	T – Tutor	rial I	P – Practical				
Year		Semeste	r	Int. N	larks	E	xt.Ma	rks	Total
Ι		II		25		75	5		100
			•						•

preamble

This course is designed to provide an introduction to the python programming language. The focus of the course is to provide students with an introduction to programming, utilities, multitasking, GUI and network application

Course Outcomes

On the completion of the course the student will be able to

	Course outcomes	Knowledge Level
CO1	Learn basic concepts of Python and its overview	K2
CO2	Implement application using list, set operation and manage files using	K2, K3
	python.	
CO3	Develop programs using the concept of Multithreading	K1,K2
CO4	Implement Object Oriented Programming using Python	K1,K2
CO5	Develop GUI based applications and implement TCP/IP and UDP	K2,K3
	network programming using python	

K1: Knowledge K2:

K2: Understand

K3: Apply

Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Μ	Μ	Μ	S
CO2	М	S	S	Μ	S
CO3	S	Μ	Μ	Μ	М
CO4	S	S	Μ	S	S
CO5	Μ	S	S	S	S

S-STRONG

M-MEDIUM

L-LOW

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	Μ	S	Μ	S	-
CO2	Μ	S	Μ	S	Μ	-
CO3	S	Μ	Μ	S	Μ	-
CO4	Μ	S	S	Μ	S	-
CO5	Μ	S	Μ		S	-
S-STRONG		M-ME	DIUM	L-LC	W	

Thiagarajar College, Madurai. - 39th ACM - Dept. of Comp. Sci. - Syllabus 2020

.

		CA	End of
	First Second		Semester
Knowledge(K1)	21	21	44
Understand(K2)	21	21	44
Apply(K3)	10	10	22
Total Marks	52	52	110

Content

Unit-I: Introduction to Python:

Introduction-Python Overview--Python Identifiers-Reserved Keywords-Operators-Control Statements.

Functions:

Introduction-Built-in Functions-User Defined Functions-Function Calls-Python Recursive Function-Writing Python scripts.

Unit-II:Lists, Tuples and Dictionaries:

Lists, Tuples and Dictionaries-Strings and Lists– Strings-Lists-Tuples and Dictionaries-Tuples-Dictionaries - Files and Exceptions - Text Files-Directories-Exceptions-Exception with Arguments-User Defined Exceptions.

Unit-III: Classes and Objects:

Overview of OOP-Class Definition-Creating Objects-Built in Class Attributes-Inheritance-Method Overriding-Data Encapsulation-Data Hiding.

Thread:

Single Tasking-Multitasking-Differences between a process and a Thread-Concurrent programming and GIL-Uses of Threads-Creating Thread in Python-Creating a Thread without using a class-creating a Thread by Creating a sub class to Thread Class- creating a Thread without Creating Sub Class to Thread Class-Thread Class Methods-Single Tasking using a Thread-Multitasking Using Multiple

Unit-IV: Graphical User Interface:

GUI in python-The Root Window-Fonts and Colors-Working with Containers-Canvas-Frame-Widgets-Button Widget-Arranging Widgets in the Frame-Label Widget-Message Widget-Text Widget-Scrollbar Widget-Check button Widget-Radio button Widget-Entry Widget-Spin box Widget-List box Widget-Spin box widget-List box Widget-Menu Widgetcreating Tables-Points to Remember.

Unit-V:Networking in python:

Protocol-TCP/IP Protocol-User Datagram Protocol(UDP)-Sockets-Knowing IP Address-URL-Reading the Source Code of a Web page-Downloading a Web Page from Internet-Downloading an Image from Internet-A TCP/IP Server-A TCP/IP

Client-A UDP Server-A UDP Client-File Server-File Client-Two-Way Communication Between Server and Client-Sending a Simple mail-points to Remember

12 Hours

12 Hours

12 Hours

14 Hours

10 Hours

Text Book

1. Title: Problem Solving and Python Programming

Author: E. Balagurusamy Publisher: Mc Graw Hill Education Year of Edition: 2018

2. Title: Core Python Programming Author: Dr. R.Nageswara Rao Publisher: Dreamtech Press Edition: second

Chapters:

Unit	Chapters
Ι	3.1,3.2,3.5,3.6,3.9,3.13,4.1,4.2,4.4,4.6,4.6,4.10 (from book 1)
II	5.1, 5.2, 6.1, 6.2, 7.1 to 7.5 (from book 1)
ш	8.1 To 8.3, 8.6 To 8.10, 21(Page no: 537 to 549) from book 2
IV	22 (Page no: 569 to 620) from book 2
V	23 (Page no: 623 to 644) from book 2

Reference Book:

1. Chun, J Wesley, Core Python Programming, 2nd Edition, Pearson, reprint 2010.

Web Resources:

- 1) <u>https://www.learnpython.org/</u>
- The above web link is used to understand core python concepts and advanced concepts such as networking and GUI applications
- 2) <u>https://www.tutorialspoint.com/python/</u>
- The above web link is designed to know python concepts and advanced concepts such as networking and GUI applications with suitable examples.

Course Designer Mr.J.Prakash

B.Sc. Computer Science with Cognitive Systems

(For those who join in 2020 and after)

Programme Code - UCG

Course Title	Category		L	Т	Р	Credit
Data Structures	Core 3		4	-	-	4
L – Lecture	T – Tutorial	P –	Practic	cal	•	
Semester		Internal	Exter	nal	Total	
II		25	75		100	
	Course Title Data Structures L – Lecture Semester II	Course TitleCategoryData StructuresCore 3L – LectureT – TutorialSemesterII	Course TitleCategoryData StructuresCore 3L – LectureT – TutorialSemesterInternalII25	Course TitleCategoryLData StructuresCore 34L - LectureT - TutorialP - FractionSemesterInternalExternalII2575	Course TitleCategoryLTData StructuresCore 34- $L - Lecture$ $T - Tutorial$ $P - Fractical$ SemesterInternalExternalII2575	Course TitleCategoryLTPData StructuresCore 34 $L - Lecture$ $T - Tutorial$ $P - Factivet-SemesterInternalExtervalTotalII2575100$

Preamble

The course elaborates on basic data structure concepts with different ways of organizing data and developing algorithms for various operations and applications on data structures.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Learn the basic data structures and its operations and also calculate time and space complexity	K1
CO2	Understand stack and queue data structure and their practical application	К2
CO3	Implement Linked list real time applications like memory management.	K3
CO4	Represent and manipulate data using nonlinear data structures like trees and graphs to design algorithms for various applications	К3
CO5	Understand the concepts of search and sort algorithms using data structures given specific user requirements.	К3
	K1-Knowledge K2-Understand K3	3-Apply

Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	L	-	-
C O2	S	-	-	S	-
C O3	М	S	-	М	-
C O 4	-	Μ	-	-	Μ
CO5	S	S	Μ	S	-

S-STRONG

M-MEDIUM

L-LOW

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	M	S	Μ	S	-
CO2	Μ	S	Μ	S	Μ	-
CO3	S	Μ	Μ	S	Μ	-
CO4	Μ	S	S	М	S	-
CO5	Μ	S	М		S	-

Thiagarajar College, Madurai. - 39th ACM - Dept. of Comp. Sci. - Syllabus 2020

Blooms taxonomy: Assessment Pattern

		CA	End of
	First	Second	Semester
Knowledge(K1)	21	21	44
Understand(K2)	21	21	44
Apply(K3)	10	10	22
Total Marks	52	52	110

DATA STRUCTURES

(12 Hours)

(14 Hours)

(12 Hours)

Introduction and Overview: Introduction - Basic Terminology; Elementary Data Organization - Data structures - Data structure operations - Algorithms: Complexity, Time-Space Trade-off. Preliminaries: Algorithmic Notation - Control Structures-Variables, Data Types. Arrays, Records and Pointers: Introduction - Linear Arrays - Representation of Linear Arrays in Memory - Traversing Linear array - Inserting and Deleting - Multidimensional Array

Unit-II

Unit-I

Stack, Queues, Recursion: Introduction – Stacks - Array Representation of Stacks - Linked Representation of Stacks - Arithmetic Expressions - Polish Notation - Recursion-Towers of Hanoi - Implementation of Recursive Procedures by Stacks – Queues - Linked Representation of Queues – Dequeue - Priority Queues

Unit-III

Linked Lists: Introduction - Linked Lists - Representation of Linked Lists in Memory-Traversing a Linked List - Memory Allocation-Garbage Collection –Insertion into a Linked List - Deletion from a Linked List - Header Linked Lists

Unit-IV

(12 Hours)

Trees: Introduction - Binary Trees - Representing Binary Trees in Memory-traversing binary trees-Graphs: Terminology and Representations –Sequential Representation of Graphs-Adjacency Matrix, Path Matrix

Unit -V

(10 Hours)

Sorting and Searching: Introduction – Sorting - Insertion Sort - Selection Sort - Merging -Merge Sort - Radix Sort - Bubble Sort- Quick Sort. Searching and Data Modification – Hashing- Linear Search - Binary Search

Text Book

 Seymour Lipschutz, Data Structures, TataMcGraw Hill Company,5th Edition 2009, Reprinted, 2014

Reference

- E. Horowitz & Sahni, Fundamentals of Data Structure, Galgotia Book Source, 1983.
- A. Tannenbaum, Data Structure Using C, Pearson Education, 2003.

Chapters: (Relevant Topics only)

Unit – I	: 1.1 to 1.5, 2.1, 2.3, 2.4, 2.8, 4.1 to 4.5, 4.9
Unit – II	: 6.1 to 6.5,6.7 to 6.13
Unit-III	: 5.1 to 5.4,5.6 to 5.9
Unit-IV	: 7.1 to 7.4,8.1 to 8.3
Unit-V	: 9.1 to 9.9

Web Resources

- 1. <u>https://www.javatpoint.com/data-structure-tutorial</u>
- The above web link is designed to understand datastructures concepts with examples.
- 2. <u>https://www.studytonight.com/data-structures/introduction-to-data-structures</u>
- The above web link is designed to learn data structures and to perform different operations on data.

Course Designer

Mrs.J.UMA

THIAGARAJAR COLLEGE (AUTONOMOUS) :: MADURAI – 09 DEPARTMENT OF COMPUTER SCIENCE **B.Sc. Computer Science with Cognitive Systems**

(For those who join in 2020 and after)

Cou	rse	Course T	Category	L	Т	Р	Credit	
Coo	de							
UMA20	MA20GE21I Probability and		l Statistics	Generic	5	-	-	5
				Elective				
_		L - Lecture	T - Tutor	ial	P – 1	Practic	cal	
Year		Semester	Int. Marks		Ext.	Mark	S	Total
First		Second	25			75		100

Preamble

Statistics is the systematic study of variation in data and the course is a foundation for probability and statistical ideas in exploratory data analysis and provides a concise and clear description of various statistical methods used for analysis.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Improve data handling skills and summarize statistical computations	K2, K3
CO2	Determine the relationship between quantitative variables and extend	K2, K3
	regression analysis	
CO3	Recall and apply a comprehensive set of Probability ideas	K1, K3
CO4	Find, interpret and analyze the measure of central tendencies, Moment	K1, K2, K3
	Generating function and Characteristic function of random variables	
CO5	Relate, Analyze and Demonstrate the knowledge of using various	K1, K2, K3
	distributions for statistical analysis	

Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	-	-	-	Μ
CO2	-	-	S	Μ	-
CO3	S	-	-	Μ	-
CO4	-	S	М	-	М
CO5	-	S		-	Μ

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	Μ	Μ		Μ	
CO2	S	S	S	Μ		
CO3	S	S	S		Μ	Μ
CO4	Μ	S	S	Μ		
CO5	S	S	S	Μ	Μ	Μ

Blooms taxonomy

	(CA	End of		
	First	Second	Semester		
Knowledge(K1)	21	21	44		
Understand(K2)	21	21	44		
Apply(K3)	10	10	22		
Total Marks	52	52	110		

Contents

Unit I

Central Tendencies: Introduction – Arithmetic Mean. Measures of Dispersion: Introduction – Measures of Dispersion.

Unit II

Correlation and Regression: Introduction - Correlation - Rank Correlation - Regression.

Unit III

Probability: Introduction- Probability- Conditional Probability.

Unit IV

Mathematical Expectation of random variables- Moment Generating Function - Characteristic Function.

Unit V (Formula Derivations are not required. Only problems need be dealt with) (**18 Hours**) Some Special Distributions: Introduction – Binomial Distribution – Poisson Distribution -Normal Distribution.

Text Book:

Arumugam. S. and Thangapandi Isaac. A., 2011, Statistics, New Gamma Publishing House, Palayamkotai.

Chapters:

Unit	Chapter/Section
Ι	2(2.0 - 2.1), 3(3.0, 3.1)
II	6(6.0 - 6.3)
III	11(11.0-11.2)
IV	12(12.4-12.6)
V	13(13.0-13.3)

References:

- 1. Vittal. P.R., 2013, Mathematical Statistics, Margham Publications, Chennai.
- 2. Gupta. S.C. and Kapoor. V.K., 2007, Fundamentals of Mathematical Statistics, Eleventh edition, Sultan Chand & sons, New Delhi.
- 3. Gupta. S.C. and Kapoor. V.K., 2015, Elements of Mathematical Statistics, Third Edition, Sultan Chand & Sons, Educational Publishers, New Delhi.

Course Designers:

1. Dr. R. Angeline Chella Rajathi

2. Mr. K.V. Janarthanan

Thiagarajar College, Madurai. - 39th ACM - Dept. of Comp. Sci. - Syllabus 2020

1. 1.

(15 Hours)

(15 Hours)

(12 Hours)

(15 Hours)

K - 125

B.Sc. Computer Science with Cognitive Systems (For those who join in 2020 and after)

Programme Code - UCG

Course code	Course Title	Category		L	Т	Р	Credit
UCG20CL22	Data structure Lab	Core Lab – 2		-	-	4	2
	L – Lecture	T – Tutorial	P – 1	Practic	cal		
Year	Semester		Internal	Exter	nal	Total	
Ι	II		40	60		100	
•	1		1	1			

Preamble

The course provides the knowledge is to implement various data structure & algorithm methods that impact the performance of program efficiently.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcome	Knowledge Level
CO1	Develop programs for stack and queue data structure and its operations.	K2,K3
CO2	Develop programs for singly and doubly linked list operations	K2,K3
CO3	Implement various traversal Techniques for non linear data structures	К3
CO4	Develop program to implement Shortest Path Algorithms and binary	К3
	search	
CO5	Develop programs for different types of sorting methods	K2,K3
	K1-Knowledge K2-Understand	K3-Apply

Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	Μ	Μ	Μ
CO2	S	S	S	S	L
CO3	S	Μ	Μ	Μ	Μ
CO4	S	S	Μ	Μ	Μ
C O 5	S	S	Μ	Μ	L
S-STRONG		M-MEDI	UM	L-LOW	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	Μ	Μ	S	S	Μ
CO2	Μ	S	S	S	Μ	L
CO3	Μ	Μ	S	S	S	L
CO4	Μ	S	S	L	S	Μ
CO5	S	S	Μ	Μ	S	Μ
S-STRONG	r	M-MEDII	JM	L-LOW	•	

Content

- 1. Write a program to implement stack operations.
- 2. Write a program to implement queue operations.
- 3. Write a program to implement Binary Search.
- 4. Write a program to implement singly linked list operations.
- 5. Write a program to implement doubly linked list operations.
- 6. Write a program to implement Graph Traversals.
- 7. Write a program to implement Tree traversals.
- 8. Write a program to implement Shortest Path Algorithms.
- 9. Write a program to implement Merge Sorting.
- 10. Write a program to implement Quick Sort-Analysis.
- 11. Write a program to implement selection sorting.
- 12. Write a program to implement insertion sorting.

Web Resources

- 1. <u>https://www.geeksforgeeks.org/data-structures/</u>
- The above web link is designed to understand data structures concepts with exercises.
- 2. <u>https://www.programiz.com/dsa</u>
- The above web link is designed to understand data structures concepts with exercises.

Course Designer:

Mrs.J.UMA

THIAGARAJAR COLLEGE (AUTONOMOUS) :: MADURAI – 09 DEPARTMENT OF COMPUTER SCIENCE **B.Sc. Computer Science with Cognitive Systems** (For those who join in 2020 and after)

Programme Code - UCG

Course code	Course Title	Category		L	Τ	P	Credit
UCG20CL21	Python Programming Lab	Core Lab – 2		-	-	4	2
	L – Lecture	T – Tutorial	P –	Practio	cal		
Year	Semester		Internal	Exte	rnal	Total	
Ι	II		40	60		100	

Preamble

The course provides the knowledge is to implement various data structure & algorithm methods that impact the performance of program efficiently.

Course Outcomes

On the completion of the course the student will be able to

#	Соц	irse Outcome	Knowledge Leve	el.
CO1	Learn and apply OOPS concepts.		K2,K3	
CO2	Implement exception handling an	K2,K3		
CO3	Develop GUI applications using	TKinter.	K2,K3	
CO4	Implement network applications.		К3	
CO5	Develop data science applications using Pandas		K2,K3	
	K1-Knowledge	K2-Understand	K3-Apply	

Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	Μ	Μ	S
CO2	S	S	S	S	S
CO3	S	Μ	Μ	Μ	S
CO4	S	S	Μ	Μ	S
CO5	S	S	Μ	Μ	S
S-STRONO	Ĵ	M-MED	IUM	L-LOW	7

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	Μ	L	S	S	Μ
CO2	Μ	S	S	S	L	L
CO3	Μ	Μ	S	S	S	L
CO4	Μ	S	Μ	Μ	S	Μ
CO5	S	S	Μ	Μ	Μ	Μ
S-STRONG	r	M-MEDIU	JM	L-LOW		

Content

- 1. Python program to find factorial for a given number.
- 2. Python program to generate Fibonacci series.
- 3. Python program to implement classes and objects.
- 4. Python program to implement the concept of constructors.
- 5. Python program to implement the various types of Inheritance.
- 6. Python program to demonstrate method overriding.
- 7. Python program to demonstrate Exception.
- 8. Python program to demonstrate Multithreading.
- 9. Python program to demonstrate font and color.
- 10. Python program to demonstrate GUI widgets.
- 11. Python program to demonstrate socket programming.
- 12. Python program to implement DML operations.
- 13. Python program to demonstrate Dictionary.
- 14. Python program to demonstrate data frame from dictionary.
- 15. Python program to demonstrate indexing and selecting data.
- 16. Python program to demonstrate group by operations.

Web Resources

- 1. <u>https://www.programiz.com/python-programming/examples</u>
 - The above web link is designed to give idea about core python concepts with suitable programming examples.
- 2. <u>https://pythonprogramming.net/data-analysis-tutorials/</u>
 - The above web link is designed to understand data analytics concepts with examples using python.

Course Designer:

Mr.J.Prakash

THIAGARAJAR COLLEGE, MADURAI – 9. (Re-Accredited with 'A' Grade by NAAC) VALUE EDUCATION

Course Code	Course Title		Category	L	Т	Р	Credit
U20VE21	Value Education		AECC2	2	-	-	1
Voor	Somostor	Int M	arlza	L	Tyt Ma	rlza	Total

Year	Semester	Int. Marks	Ext.Marks	Total
First	Second	15	35	50

Preamble

Students acquire knowledge on the basic concepts, components and importance of environment.

Course Outcomes

On the completion of the course the student will be able to

	Course outcomes	Knowledge Level	
CO1	Define the values, Self assessment and values needed for self development		
CO2	Explain about the good character and good relationships		
CO3	Summarise the types of thoughts, developing thought pattern, external influences on thoughts	K1	
CO4	Find out the causes of Illusions, Symptoms and stages of stress		

K1: Knowledge K2: Understand K3: Apply

Mapping of Course Outcomes with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	-	М	-	-
CO2	-	L	М	L	-
CO3	Μ	М	S	-	-
CO4		-	М	L	-

Mapping of Course Outcome with Programme Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PO6
C01	L	-	М	-	-	-
CO2	-	L	М	L	-	L
CO3	М-	М	S	-	-	-
CO4	-	-	Μ	L	-	Μ

Thiagarajar College, Madurai. - 39th ACM - Dept. of Comp. Sci. - Syllabus 2020

Blooms taxonomy: Assessment Pattern

	CA		End of	
	First	Second	Semester	
Knowledge	40%	40%	40%	
Understand	40%	40%	40%	
Apply	20%	20%	20%	

Course Title: Value Education

Unit I

Self Development – Introduction - Definition and Types of Values – Self Assessment – Values needed for self development - Values needed for family life –Principles of happy living

Character development- Good character – Good relationships - Legendary people of highest character – The quest for character –Developing character -The key to good character.

Unit II:

Positive Thinking and Self Esteem - Types of thoughts - Areas of thinking - Developing thought pattern - External influences on Thoughts - Methods to keep outlook positive – Meaning of Self Esteem – Self empowerment.

Stress free living – Illusions and causes - Symptoms and stages of stress – Self confidence– Role models and leadership qualities – Critical thinking - Communication skills – Happy and successful life.

Reference:

Study material / Course material

1. Values for Excellence in Life Compiled by then Curriculum Development Cell Thiagarajar College, Madurai, in collaboration with the Education wing, Brahma Kumaris, Madurai.